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A B S T R A C T

The vibration behaviour of the vibrating rods is one of the key factors for the quality of concrete vibration
that is essential for the long-term safety of concrete structures. Although many vibration operation regulations
have been widely applied, evaluating method for concrete vibration samples is relatively rare. To fill this
gap, this paper proposes a concrete vibration data acquisition system and attempts to perform a quality
analysis of samples employing machine learning that amalgamates various parameters. The experimental
results demonstrate that the data collection system to identify the vibration state achieves an accuracy of
93.75% and an accuracy of 90.3% in classifying vibration quality levels. The proposed method can classify
and evaluate concrete quality levels, which strongly supports the visualization of concrete vibration process
and the implementation of autonomous robot vibration. In the future, improving the reliability of the system
and enhancing the accuracy of algorithms will be the focused.

1. Introduction

Concrete vibration is a crucial factor in determining project quality.
It affects the economic, environmental, and social impact of the project,
as well as the safety, reliability, and durability of the structure. Con-
crete vibration has attracted the attention of a vast range of engineering
and architectural practitioners. Insufficient concrete vibration time can
lead to improper settling of the concrete, resulting in various issues.
Honeycombing, resulting from gaps or voids between coarse aggregate
particles [1], is a prevalent concern in concrete construction [2]. Subsi-
dence cracking presents a risk if the concrete does not vibrate properly,
as inadequate settling can lead to surface cracks. Excessive vibration
of the concrete can lead to multiple issues with the end product.
These issues include the separation of the constituents of the blend,
leading to an irregular surface. Over-vibration can also cause sand
streaks within the concrete, which not only weakens the structure but
is also unsightly. Additionally, excessive vibration can cause the loss
of entrapped air within the concrete, resulting in a weaker and more
prone cracking material [3]. To prevent these problems, it is crucial
to monitor the vibration process carefully when working with concrete
to ensure that the final product is strong and consistent throughout.
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In addition to the information mentioned above, concrete vibration

specifications and manuals not only outline minimum requirements

for vibration behaviour but also provide guidance on ideal vibration

characteristics. These guidelines may include details on the frequency,

amplitude, duration, and timing of the vibrations’ application. It is clear

that a comprehensive understanding of concrete vibration specifica-

tions and manuals is essential to achieve the desired outcomes in any

project that utilizes this technology [4].

However, in actual practice, the manuals do not play a key role. In

construction practice, the quality of concrete is often determined by

conducting destructive test [5] or detecting cracks and bugholes on

concrete surfaces [6] on hardened concrete. However, these methods

can only monitor concrete weathering because of its compactness after

vibration rather than timely prevention of concrete incompactness, so

this method is not suitable for application in large vibrating fields

because it is highly time-consuming and expensive. Thus, a large num-

ber of researchers have investigated real-time digital vibration. The

digitization of vibration behaviour is an important aspect of concrete

quality assessment. The indices that affect concrete vibration can be

categorized into two groups.
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(1) The first group includes the effective radius of action and the
optimum vibration time, which are influenced by various factors
such as the type of concrete material, frequency and amplitude
of the vibrator, reinforcement, and formwork layout.

(2) The second group of indices includes the duration of the vibra-
tion, position of the vibration and posture of the poker vibrator,
which are mainly determined by the vibration behaviour and
are equally important in determining the overall quality of the
vibration.

With knowledge of both types of indices, we can make a comprehensive
assessment of the overall quality of the vibration [7,8]. However, as
mentioned above, although the importance of vibration is known and
specifications and manuals on the vibration process have been reported,
construction personnel and managers often lack knowledge of methods
and tools to supervise and evaluate vibration quality, resulting in
vibration quality depending largely on the experience and subjective
judgement of workers. This has led to a decline in productivity in the
past few decades in the construction industry [9–13].

Fortunately, the advancement of Artificial Intelligence (AI) has en-
abled computers to mimic human thinking and behaviour, facilitating
comprehension and problem-solving [14]. Machine learning algorithms
can make decisions based on previous experience and generate the
most precise solutions by collecting and analysing data. It is crucial to
select the relevant features in the dataset adequately and in sufficient
quantity for the machine learning algorithm to solve the problem
effectively [15]. Introducing machine learning to engineering problems
can have a significant positive impact. However, there is a paucity of
research investigating the application of machine learning techniques
in concrete vibration. The majority of studies have focused on the
monitoring of individual concrete indicators using diverse methodolo-
gies, with the resulting hardware devices often exhibiting suboptimal
engineering and long layout times. Consequently, it is of significant
academic interest to explore the potential of machine learning in the
context of concrete vibration. Moreover, to the best of our knowledge,
there is no general evaluation method that use a large number of
concrete vibration samples to understand the characteristics of concrete
quality grades using machine learning. Therefore, in this paper, we
introduce machine learning with a data collection system composition
to solve the problem of concrete vibration quality level assessment.

Research ideas are derived from a hybrid neural network recog-
nition model to process the data stream developed by Quan’s team.
They enabled the automatic derivation of metrics related to vibration
effectiveness and the first staged description of the concrete vibration
process. A model for assessing the quality level of concrete vibration
is proposed in this paper, using a concrete vibration data acquisition
system and machine learning algorithms [16]. However, there is a
paucity of research investigating the utilization of the raw concrete
vibration data collected to grade the quality of vibration. Furthermore,
the construction of the monitoring hardware for the majority of the
studies was intricate and time-consuming. It is evident that engineering
projects are not particularly amenable to such monitoring equipment.
Consequently, the creation of a more engineering-oriented monitoring
system is imperative. Additionally, the advancement of smart con-
struction necessitates the automation of building construction. The
integration of machine learning algorithms that can learn from previ-
ous concrete vibration experiences and autonomously make vibration
decisions to maintain a high vibration quality level is crucial.

In this paper, we utilize the collected data for sample extraction
and classify the vibration quality of each insertion and withdrawal
cycle, thereby helping management personnel carry out more accurate
monitoring to obtain more accurate concrete strength estimates. To
extract samples of concrete vibration, a data monitoring and collecting
system is developed, based on an Inertial Measurement Unit (IMU) and
a current sensor. The system utilizes the IMU to gather acceleration
and angular velocity data, which are then employed to calculate the

velocity of the vibrating rod. Meanwhile, the current sensor collects
data pertaining to the current, which is then used to determine the
vibrating rod’s status. As a result of this innovative combination of
sensor types, the system is characterized by its simplicity, low cost, and
numerous advantages. Furthermore, the effects of different methods
were compared on vibration samples to assess the quality levels of
the concrete vibration. This study’s contribution lies in the innovation
of the collection system that utilizes both inertial measurement units
and current sensors. This study presents an innovative method for
assessing the status of a vibrating rod. The method is based on a current
change and allows for objective evaluations. The research presented in
this paper contributes to enhancing the ultimate quality of concrete
structures, enhancing the safety and economy of construction, and
fostering the progress of intelligent construction.

The remainder of this paper is organized as follows. Section 2
provides a summary of the pertinent literature. Section 3 presents
a detailed explanation of the proposed framework and methodology.
Section 4 verifies the feasibility of the proposed method. Section 5
discusses the improvements of the experiments and future work of this
paper, as well as suggestions for future work. The last section draws
the conclusions of this paper.

2. Literature review

To classify the quality level of concrete, it is crucial to possess a thor-
ough knowledge of the parameters that arise during concrete vibration.
Past studies have suggested multiple techniques for comprehending the
impact of vibration quality by employing a variety of sensor data com-
binations. This section now assesses different methods for monitoring
concrete vibration parameters and describes the application of shallow
learning in construction.

2.1. Monitoring the vibration quality of concrete

Only when the concrete is vibrated properly can the quality of the
concrete be guaranteed. Although concrete vibration is an outstanding
factor in concrete structures, there will still be some problems in the
process of construction. Currently, because the process of concrete
vibration is invisible, the quality of concrete vibration is decided by the
subjective judgement of construction crews, which greatly limits the
improvement of concrete quality. Many peer fellow researchers have
endeavoured to address the issue of concrete vibration quality.

Common classifications of vibration quality ratings mainly include
over-vibration, normal, and under-vibration [17]. It is important to
note that, as stated in the research paper, missing vibration refers to
the absence of vibration and is not considered in the classification
of vibration grades. However, the avoidance of missing vibration is a
prerequisite for the generation of vibration quality grades. As such, it
is necessary to review the literature on missing vibration to enable a
thorough analysis of quality classes of concrete. Specifically, this paper
focuses on the classification of the quality of concrete vibration.

Chan et al. [18] investigated the impacts of normal and insuffi-
cient vibration on the consolidation and bonding of reinforcements
for normal-slump concrete, High-Performance Concrete (HPC), and
Self-Compact Concrete (SCC). These findings indicate that for the devel-
opment of bond reinforcement in normal concrete, adequate vibration
is indispensable, whereas HPC requires limited vibration. Olsen [19]
employed accelerometers to gauge the pace of motion of a new concrete
blend and determined the least amount of energy necessary to attain
at least 97% consolidation. Due to the intricate nature of compacting
concrete, particularly concerning multiple critical factors such as the
vibrating frequency, amplitude, duration, and rheological properties
of the mixture, few studies have explored the effects of vibration
parameters on vibration quality.

Petrou et al. [20] utilized nuclear medicine techniques to examine
the mechanism of concrete behaviour. The use of scintillation cameras
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enabled the observation of the position of the vibrating rod in addition
to depth information, facilitating the identification of any vibration
leakage. The findings of this study provide significant insights into the
fundamental characteristics of concrete.

Tian et al. [21] employed a dual-satellite system-based (Global Posi-
tioning System (GPS) and Global Navigation Satellite System
(GLONASS)) tracking method to evaluate defects such as missing vi-
bration, under-vibration, and over-vibration in the concrete placement
process in a quantitative manner. The tracking system provides precise
and timely remedial measures. This method enables the collection of
vibration trajectory coordinates to mitigate missed vibration issues
while simultaneously monitoring vibration status and duration.

Contrary to the low accuracy of indoor GPS, Gong et al. [22]
highlighted the concrete quality issue due to insufficient real-time
feedback of vibration data. They presented a Ultra-Wideband (UWB)
positioning system to capture not only the position but also the duration
of vibration. As a result, this system is suitable for both indoor and
outdoor settings with high accuracy.

Tian et al. [23] presented a worldwide satellite navigation sys-
tem aimed at tracing the vibration trajectory as a response to the
issue of concrete consolidation under-vibration. This system is capable
of determining the vibration status, calculating the vibration time,
and promptly reporting any defects that appear, thus enabling timely
remedial action.

Lee et al. [24] proposed a system framework that used computer
vision and ultrasonic positioning to collect concrete vibration data.
Moreover, based on this framework, Lee et al. [25] used ultrasonic
sensors and electromagnetic sensors to collect vibration data, such as
vibration duration and vibration state, from the vibration rod. This
method can ensure real-time quality detection of concrete work. How-
ever, the proposed coordinate transformation calculation based on two
ultrasonic sensors and three electromagnetic sensors for tracking and
positioning seemed to be slightly cumbersome.

Many researchers jointly promoted that there is no specific as-
sessment model to symbolize the relationship between the vibration
effort and the quality of consolidation. For this question, Li et al. [26]
proposed a model of vibration energy transfer in which the concrete
vibration energy distribution is quantitatively characterized, and a
visualization system was developed. Subsequently, the method was
employed to assess the quality of vibration in reinforced concrete,
thereby enabling workers to address substandard vibration areas in a
timely manner [27].

The aforementioned study employs a number of traditional tech-
niques with the objective of measuring the impact of vibration pa-
rameters on vibration quality for the purposes of quality control and
enhancement. The rapid development of AI has led to the introduction
of an increasing number of machine learning algorithms into the field
of concrete quality monitoring.

Zhong et al. [28] employed a range of indicators, including the
water-cement ratio, slump, insertion depth and vibration time, to assess
the quality of concrete vibration. To gain a dynamic understanding of
this quality, they employed the Random Forest algorithm.

Liu et al. [29] proposed positioning a concrete vibrating rod based
on stereo vision, utilizing a stereo matching algorithm combined with
a motion tracking algorithm to measure the vibration position and
vibration depth. However, the shortcomings of machine vision are
obvious, the sensitivity to light is very large, and whether to adapt
to various lighting conditions still needs to be verified. Moreover, at
present, real-time positioning of the rod utilizing machine vision is
lacking, and this method is a platform for future research [30].

Wang et al. [31] contend that vibration quality depends critically
on the duration and depth of vibration. Given the nonuniformity of
concrete, they developed a concrete surface image classification model
based on the ResNet-50 model to ascertain the optimal vibration du-
ration and depth of vibration and to provide early warning of the
vibration process. Building on this, in 2023, they introduced a visual

method based on semi-supervised learning (Co-MixMatch) and data
augmentation (StyleGAN2) to analyse the quality of concrete vibration
by training a model [32]. This approach contributed to the field in a
close way, as it enabled the development of a model that could be used
to assess the quality of concrete vibration. Beforehand, Wei et al. [33]
proposed a deep learning instance-level recognition and quantification
method, which implements bugholes high-precision training tests on
raw images of concrete surfaces. This approach aims to achieve im-
proved quality and smoothness of concrete surfaces. Sun et al. [6] have
proposed a method based on deep learning for the automatic detection
of cracks and holes on concrete surfaces.

Quan et al. [17] introduced a technique for monitoring the position
of a vibrating rod tip via a UWB sensor and an inclinometer. The
Hopfield Neural Network (HNN) identification model they proposed
can recognize the status of the vibrating rod. Nevertheless, the size of
the inclinometer is significant, causing installations on the vibrating rod
to be inconvenient, hampering the practicality of the technique.

Li et al. [34] determined the current difference threshold based on
Simulated Annealing and Genetic Algorithms (SAGA) to determine the
different working states of the vibrating rod (insertion, withdrawal,
touching the reinforcement), through which the vibration time can be
effectively detected to control the quality of concrete vibration.

Liu et al. [35] employed Convolutional Neural Networks (CNN)
and image analysis techniques to accurately identify vibration times,
thereby facilitating a rapid assessment of concrete vibration quality.

Ma et al. [36] proposed a method combining a Self-Attentive Fea-
ture Fusion Mechanism and a Multi-Scale Convolutional Neural Net-
work (SE-MCNN) to identify and classify the vibration signals of con-
crete vibrators with high accuracy. This enables the accurate and
quantitative assessment of the quality of concrete vibration.

Summarizing previous studies, Table 1 provides a clear picture of
the indicators that previous researchers have focused on as well as the
problems they have addressed.

This indicates that the utilization of machine learning methodolo-
gies to address concrete vibration issues is a favoured approach among
a diverse range of researchers. However, in previous research, several
scholars have suggested monitoring techniques for identifying faults in
concrete vibration, including missing vibration, under-vibration, and
over-vibration, which have yielded positive outcomes. However, the
majority of these studies rely on a single vibration parameter (vibration
time, depth and energy), with no clear categorization of vibration
quality level. Consequently, under-vibration and over-vibration are
typically evaluated based on vibration time alone, which lacks pre-
cision. Thus, this paper builds upon previous research in this field
by employing a machine learning algorithm classification model to
categorize concrete vibration samples into different quality levels.

2.2. Shallow learning in construction

Shallow learning comprises supervised learning [37], unsupervised
learning [38], and reinforcement learning [39]. Unsupervised learning
extracts knowledge from unlabelled data and focuses on data approx-
imation and clustering issues. In contrast, supervised learning learns
from labelled data to discover patterns and predict the outcomes of new
inputs based on that pattern. Reinforcement learning [40] is a learning
mechanism that maximizes the rewards obtained through learning.

Birnie et al. [41] utilized a decision tree algorithm to forecast the ex-
penses of a home renovation contract. McCabe et al. [42] and their col-
leagues utilized Bayesian networks for assessing building performance.
Baum et al. [43] used the Hidden Markov Model (HMM) algorithm for
the probabilistic prediction of tunnel geology. Shu et al. [44] employed
Support Vector Machine (SVM) to implement real-time monitoring of
construction sites in construction projects. Furthermore, in 2017, Seong
et al. [45] suggested a method to detect workers based on the colour
pixels of their safety vests. The feasibility of human motion recognition
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Table 1
Conclusion of previous researches.

Key technology Year Norm Problems solved

Nuclear medicine technology 2000 Position Behavioural mechanisms
GPS-RTK & GPRS 2013 Position Missing vibration
UWB 2015 Position Missing vibration
aStereoscopic vision 2018 Position, depth, time Missing vibration
aRandom Forest 2018 Water-cement ratio, slump, depth, time Quality assessment
GNSS & GPRS 2019 Status, time Vibration defects
aMask R-CNN 2019 Surface image Bugholes identification
aComputer vision and ultrasonic positioning 2019 Status, time Real-time monitoring
aDeep learning 2021 Surface image Bugholes identification
aCNN & Internet of things 2021 Time, depth Vibration defects
Vibration energy transfer model 2022 Power Vibration energy
aUWB + inclinometer +HNN 2022 Position, time Quality assessment
aCurrent sensor + SAGA 2022 Status, time Quality assessment
Vibration energy transfer model 2023 Power Reinforced concrete assessment
aCo-MixMatch + StyleGAN2 2023 Surface image Quality assessment
aCNN + Image analysis 2023 Time Quality assessment
aSE-MCNN 2023 Vibration signals Quality assessment

a Indicates that the research involves machine learning.

in the field was studied by Ryu et al. [46] in 2019 using a wrist-worn
accelerometer activity tracker.

The literature indicates that shallow learning can significantly aid
in automating and enhancing intelligence in construction projects.
This paper explores different shallow learning algorithms employed
for predicting and categorizing concrete vibration samples. The vibra-
tion data acquisition system must ensure simplicity, reliability, and
excellent engineering applicability while ensuring that the hardness of
vibrated concrete remains within acceptable engineering thresholds. In
this study, we combined cost-effective MENS IMU with a current sensor
to collect vibration data in a manner that is popular among researchers.
To gather vibration samples, it is necessary to extract features from
vibration history data. Since the sample data are structured and influ-
enced by shallow learning techniques, they remain the preferred form
of an algorithm for processing structured data. Therefore, this paper
employs a shallow learning algorithm to categorize vibrations.

3. Methods

This paper proposes the measurement and calculation of concrete
vibration characteristics utilizing an IMU and a current sensor. The
method is illustrated in Fig. 1 and explained below.

(1) The raw data of conventional vibration behaviour are collected.
(2) Concrete feature samples are extracted from the raw data.
(3) The samples are classified via an algorithm.
(4) The quality grade was obtained, and feedback was given to the

vibrating rod.

We focus on explaining the vibration behaviour is defined by the
raw data obtained from one insertion point to the next insertion point
following the four processes of insertion, vibration, withdrawal and
moving. And the raw data will be transferred to the computer via Uni-
versal Asynchronous Receiver/Transmitter(UART) for the purpose of
saving and generating samples with different R. The eigenvalues of the
samples are obtained through statistical and mathematical calculations
and samples are classified by means of an algorithm.

3.1. Vibration data acquisition

The concrete vibration data acquisition system consists of a vi-
brating rod, sensor units, and controller units. The IMU is mounted
inside the vibrating rod and connected to the Micro-Controller Unit
(MCU) through a cable with an RS485 unit. The current sensor is
connected to the MCU through another RS485 unit. Additionally, the
wireless communication module requires a RS485 unit to be connected
to the MCU. To facilitate construction operations, the controller unit

Table 2
IMU parameter.

Parameter Value

Battery 3.7 V–260 mAh
Size 36 mm*51.3 mm*15 mm
Parameter
Triaxial

Acceleration Angular
velocity

Angular

Ranging ±16 g ±2000◦∕s X,Z ± 180◦

Y ± 90◦

Stability 0.01 g 0.05◦∕s –
Attitude
accuracy

Dynamic
0.1◦

Static
0.05◦

–

Working
frequency

TCP
1∼10 HZ

UDP
1∼200 HZ

–

Output Time Acceleration Angular velocity

and current sensor are enclosed in an external container. The wireless
module communicates wirelessly with the external Wi-Fi router, and
the Wi-Fi router transmits the collected data to the computer in real
time for display. Additionally, the resulting data are saved to a storage
device for near-term data processing. By setting up the logic, the data
can display the status of the vibrating rod in real time. Samples were
manually extracted from the raw data at various vibration stages and
classified using machine learning techniques. Furthermore, the raw
data of the entire vibration work are collected from the actual site.

The technical specifications of the IMU are described in Table 2.
The inertial measurement is used to measure triaxial acceleration and
triaxial angular velocity. The current sensor can independently measure
the work current of the vibrating rod. As shown in Fig. 2, the IMU
measures 51.3 mm*36 mm*15 mm, is mounted in the vibrator rod
with electrical adhesive tape and is connected to the external container
through a cable, while the end of the cable is connected to the exterior
container. A control unit, a current sensor, and a unit for wireless
transmission are integrated within an exterior container. The external
container contains a MCU and three RS485 modules, with the latter
connecting to the MCU on one end and to the current sensor, IMU and
wireless module on the other end, as shown in Fig. 3.

3.2. Vibration behaviour collection

This paper considers the energy absorbed by the concrete in a
sample as the energy released by one vibrator insertion. The difference
between the energy in the concrete at work and the idle energy is used
to calculate the energy absorbed by the concrete at work. This is the
reason why the current threshold is needed. The energy absorbed by
the concrete was calculated using the following equation:

W = ∫ UIworkingdt − ∫ UItℎresℎolddt (1)
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Fig. 1. Process for classifying the quality grades of concrete vibration.

Fig. 2. Composition of vibrating rod: (a) IMU size; (b) IMU mounting position; (c) Position of the IMU inside the vibrating rod.

Fig. 3. Data transmission framework: (a) External container; (b) Communications infrastructure; (c) Chip unit connection.

where W denotes the energy absorbed by the concrete, U denotes the
operating voltage (220 V), Iworking denotes the working current, and
Itℎresℎold denotes the idle current of the vibrating rod.

Consequently, the features in Table 3 will be extracted.

3.2.1. Data pattern and recognition feature for each stage of the vibration
effort

For concrete of the same type, there is a resemblance among dissimi-
lar vibration quality levels resulting from the use of a uniform vibrating
rod. This similarity can be employed to categorize the vibration quality

Table 3
Description of vibration features.

Feature Time Speed Energy

Description Insertion time
Vibration time
Withdrawal time
Moving time

Insertion speed
Withdrawal speed

Absorbed energy
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Fig. 4. Vibration cycle.

classes. Previous research has established three quality levels for vi-
brating rods: under-vibration, normal, and over-vibration. In this study,
an unsupervised learning model was employed to cluster the obtained
vibration samples into the three aforementioned categories.

The IMU collects the output of the gyroscopes and accelerome-
ters, while the current sensor collects the information current when
the vibrating rod works. The current measurement process requires
setting the current threshold value. In this paper, the current when
the vibrating rod is working in air is set as the required threshold.
When the vibrating rod is inserted into the concrete, the current of
the vibrating rod will be greater than the threshold, while the current
of the vibrating rod stabilizes above and below the threshold when
the vibrating rod is pulled out. The fluctuations above and below the
threshold of the current are treated as the changes in the status of the
vibrator. Therefore, the change in the current cycle can characterize the
status of the vibrating rod. The value of the current above the threshold
indicates that the status of the rod is insertion, while the value of the
current below the threshold indicates that the status is withdrawal.

According to [17], the vibration process can be divided into four
main processes: the insertion process, the vibration process, the with-
drawal process and the movement process. As shown in Fig. 4, the
insertion process, vibration process, withdrawal process and moving
process are regarded as vibration cycles so that the whole vibration
process consists of N vibration cycles.

In this paper, it is necessary to set the determined parameters
At after measuring the current A of the working vibrating rod. The
current threshold is set to a minimum of Max

−value
and a maximum of

Max
−value

, to ensure the tightness of the logic. The relationship between
the feature parameter At and the current threshold is shown in the
equation.

At =

⎧⎪⎨⎪⎩

3, At > Max_value
1,Mix_value < At < Max_value

0.At < Mix_value
(2)

The feature should be recorded to characterize the status of the
vibrating rod. The characteristics of R are as follows:

R = Atlast − Atnow (3)

The corresponding R value indicates the corresponding status of
the vibrating rod. According to the size of the feature, the status of
the vibration can be confirmed, and the relation is shown in Table 4.
It is important to note that this paper employs a distinctive method-
ology for analysing the interaction between the vibrator bar and the
reinforcement. When the vibrating rod makes prolonged contact with
the reinforcement or becomes obstructed by it, the system provides
feedback through the jamming detection algorithm, which is charac-
terized by an eigenvalue R greater than 1. This is the period during
which human intervention is required to address the issue. In the event
that the mutual time is brief, the filtering algorithm will eliminate the
transient. The Eq. (4) provides a brief summary of the aforementioned
concept.

Ami =
(
Ai + Ai−1 +⋯ + Ai−Wmean+1

)
∕Wmean (4)

where Ami denotes the local mean filtering result, Ai represents the
current of the vibrating rod and Wmean is the size of the interval
window.

Table 4
Relationship between R and the vibrating rod status.

R The vibrating rod status

1 Insertion
0 Keep the status of the last
−1 Withdrawal
>1 Jamming

Fig. 5. State of the vibrating rod corresponding to the value of R.

In other words, all information about the state of the insertion
vibrating rod can be obtained by the IMU and current sensors and then
sent to the terminal computer by the Mono-Chip Computer (MCC) em-
bedded in the Programmable Logic Controller (PLC). The data formats
are shown in Table 5.

3.2.2. Vibration speed calculation algorithm
Although the error of the IMU diverges gradually with increasing

in working time, the algorithms proposed in this paper can avoid the
problem of the IMU. The logic of the system proposed in this paper is
based on the feature value(R), which determines the working state of
the vibrating rod. When the working state is switched, it is equivalent to
a reset function. Accordingly, the IMU presented in Table 2 is deemed
sufficient for the purposes of feature extraction.

Fig. 5 shows the variation in the R-value as a function of the change
in the state of the vibrating rod and the time at which the initial state is
set. When the state of the vibrating rod switches between two operating
states, the rod velocity information at the moment of switching is set
to the initial velocity of the IMU, which starts the recursion to the
end of the next state change. In this way, the vibrating rod velocity
information can be recursed through the state changes. Taking the
inserted state as an example, when the rod is inserted, the moment
when R changes from 0 to 1 serves as the initial state and starts
recursion to the moment when the value of R changes from 1 to 0.
In other words, each time the recursion process is executed, the error
of the inertial sensor is reset to 0 once.

However, the IMUs also have certain errors, including quantization
noise, angular random wander, angular rate random wander, zero-
bias instability noise, and zero-bias repeatability. The details of the
error analysis method can be found in Allan variance [47]. A specific
discussion of the types of error is not elaborated here because that is
not the focus of this paper. To solve the original data output from the
IMU, the data first must be preprocessed as follows.

(1) First, the unit conversion and format transformation of the an-
gular velocity and acceleration output from the IMU are needed.

(2) Second, the IMU velocity output used in this paper is in the form
of a rate, and it is necessary to multiply the output acceleration
by the interval time to obtain acceleration data in the form of
an incremental acceleration to be used for inertial navigation
system solving.

The coordinate systems used for the velocity solution are the world
coordinate system (w system) and the carrier coordinate system (b
system). The differential equation for the velocity update is:

v̇ = Rwba − g (5)

where a = [ax ay az] is the measured acceleration, Rwb represents
the rotation matrix of b with respect to w and g = [0 0 g0] is the
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Table 5
Format of collecting data.

Data Time R Current Acceleration Angular velocity

Unit of data Second (hh:mm:ss.000) −1,0,1 A g ◦/s

gravitational acceleration. Then the generalized form of the velocity
differential equation is:

�v =
(
Rwba − g

)
�t (6)

The corresponding median-based velocity update is expressed as
follows:

vk = vk−1 +

(
Rwbk

ak +Rwbk
ak−1

2
− g

)
(tk − tk−1) (7)

3.3. Vibration behaviour prediction

For concrete of the same type, there is a resemblance among dissimi-
lar vibration quality levels resulting from the use of a uniform vibrating
rod. This similarity can be employed to categorize the vibration quality
classes. For clustering in this particular application, a standard Eu-
clidean K-means clustering algorithm was selected due to its ease of
use and interpretability. The clustering performance of the K-means
clustering algorithm is affected by several distinct features, including
a significant dependence on initial conditions and clusters of different
sizes, densities, and shapes [48,49]. Initially, the algorithm defines
k centroids by selecting those that are the farthest from each other.
Next, all remaining observations are assigned to the nearest centroid
with the smallest Euclidean distance. Following the assignment of all
observations to a group, k new centroids are calculated and the next
iteration is conducted. The loop iteration continues until the centroids
no longer change positions [50]. The optimal number of clusters was
defined using the silhouette coefficient score, which ranges from −1 to
+1. Higher values indicate greater cohesion among clusters, resulting in
improved clustering. The contour coefficient is calculated by applying
the following formula:

S(i) =
b(i) − a(i)

max{a(i), b(i)}
(8)

where, a(i) represents the degree of cohesion among the sample points.
The calculations are performed as follows:

a(i) =
1

n − 1

n∑
j≠i
distance(i, j) (9)

where j represents other sample points within the same class as sample
i, and distance represents the distance between seek i and j. Therefore,
the smaller a(i) is, the closer the classes are, while b(i) is calculated in
the same way as a(i).

For pragmatic purposes, the selection of the number of clusters
relies on the desired number of clusters for structural analysis and is
influenced by standards or the available computing power. Generally,
it has been observed that selecting fewer clusters enhances cohesiveness
among the clusters.

Previous research has established three quality levels for the vibrat-
ing rod: under-vibration, normal, and over-vibration. In this study, a
K-means model was employed to cluster the obtained vibration samples
into the three aforementioned categories.

4. Experiment and results

To extract samples and collect vibration experimental data, this
paper established a concrete experimental data collection system in
Section 3 and conducted data collection at the actual construction
site. The collected data were then visualized and statistically analysed
to prove that the system can effectively collect key parameters and
identify the state of concrete vibration, thus aiding in quality control.
The experimental data were used for sample extraction. The samples
were then trained using both supervised and unsupervised learning
methods. The accuracy of these methods is compared, highlighting the
superiority of the K-means.

4.1. Experiment setup

The concrete vibration data acquisition system was set up at the
construction site, as shown in Fig. 6. The IMU was integrated into
the vibrating rod, while the vibration signal collector provided power
and data transmission to the IMU via cables. Signals collected by the
collector were then transmitted to the PC through Wi-Fi sensors. This
study aimed to build on previous sensor installation techniques that
involved fixing the sensor externally to the vibrating rod. However,
in practical construction projects, the vibrating rod frequently contacts
rebar. In certain areas, the presence of rebar hindered the complete
insertion of the sensors, and, in some instances, caused them to be
triggered, diminishing the usefulness of the project. Therefore, this
paper describes the clever mounting of an IMU inside a vibrating rod
in the context of a real project.

4.2. Data collection system validation and raw data collection of vibration
samples

To ascertain the dependability of the methodology implemented
in Section 3, it was necessary to test the compressive strength of the
vibrated concrete. The chosen method involved utilizing rebound value
measurements on vibrated concrete. Fig. 7 illustrates the arrangement
of three boxes measuring 50 cm in length, 50 cm in width, and 60 cm
in height. These boxes simulated three areas of vibration and were
anchored by a wooden board and steel. Each box was labelled with
a number from 1 to 3. The top of each box was designed with specific
vibration points, which were targeted with a vibrating rod to initiate
the vibration. The objective of the experiment is to test the efficacy of
different regions, vibration behaviours, and our proposed recognition
insertion and extraction algorithms, as well as interference algorithms.
This will enable us to evaluate the correctness of our system and data
algorithms, and to ensure the reliability of subsequent experiments. The
experiment employed reinforced concrete with a design grade of C50
as the material type.

Experienced workers were employed to vibrate the concrete after
pouring the three boxes, as shown in Fig. 8. The boxes were inserted
diagonally and vertically, and the concrete vibration process was re-
peated twice for approximately ten seconds each time at the designated
vibration points.

Fig. 9 indicates that there were no obvious defects on the surface
or the sides of the concrete. The absence of defects on the surface of
the concrete was not direct proof that the concrete did not have a
compactness problem, which requires further testing. Rebound value
testing of concrete can be a good representation of the strength of
concrete. In accordance with the technical specifications for concrete
compressive strength testing by the rebound method, 16 rebound val-
ues were obtained for the concrete to be tested. To calculate the
average rebound value of the measurement area (Formula (10)), three
maximum and three minimum values should be excluded.

Rm =

∑10
i=1

Ri

10
(10)

where Rm denotes the average rebound value of the survey area and Ri

represents the ith rebound value.

Subsequently, the concrete strength(m
fc cu

) within the defined area
of the structure can be calculated using the following formula:

m
fc cu

=

∑n

i=1
f c

cu,i

n
(11)
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Fig. 6. Setup of the concrete vibration data acquisition system: (a) Vibrating rod; (b) Construction site.

Table 6
Concrete rebound value test.

Measurement point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Box No. Actual measurement of rebound value(Rm)

Box 1
1 48 45 46 46 48 50 46 46 51 50 50 44 46 48 46 42
2 46 44 48 49 47 47 48 46 42 46 41 43 42 47 50 50
3 50 46 48 45 47 47 48 48 50 42 47 47 42 47 46 48

Box 2
4 45 41 46 39 45 47 48 41 46 48 45 44 44 46 50 44
5 47 41 50 47 47 49 39 46 49 49 48 46 50 52 48 46

Box 3
6 44 44 33 47 43 46 47 47 46 49 38 50 47 35 47 48
7 44 48 37 39 45 42 41 45 54 46 46 45 37 46 46 46
8 42 40 42 44 46 47 47 41 42 49 49 42 47 43 47 46

Carbonation depth(dm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 7. Layout of the experiment.

where f c
cu,i denotes the concrete strength conversion values for the ith

measurement area. f c
cu is derived from the concrete strength conver-

sion table for the survey area, utilizing the average rebound value Rm

and the average carbonation depth value dm, which are combined.
The rebound value test was performed on three vibrated boxes, and

the results obtained are shown in Table 6. The average carbonation
depth of the experimentally measured concrete was zero. The aver-
age rebound value and carbonation depth were used to calculate the
concrete strength conversion values(f c

cu,i) for the test area, and the
concrete strength was calculated using Formula (11). The results are
shown in Table 7. It should be noted that the concrete strength(m

fc cu
)

for the survey area points was obtained by excluding the three maxi-
mum and three minimum values of carbonation depth(dm), according to
the requirements of the rebound value calculation. The C50 reinforced
concrete used in this paper accepts a rebound value of 44 or more. The
results demonstrated that the vibrating rod system devised in this paper
is capable of vibrating concrete to achieve satisfactory strength.

The validated vibrating rod system was utilized to collect real-
time data from the concrete as it was being vibrated. The collected
data were transmitted to the Wi-Fi sensor through the vibrating signal
collector. Subsequently, the signal was displayed in real time on a
PC and saved for future reference. To obtain relatively scientific and
reasonable vibration samples, experienced vibration workers operated
the vibrating rod and collected the vibration signals in this study.

The measurement duration was 1313.562 s, with a current threshold
of 2.73 for the vibrating rod in the air. The inertial measurement
unit was operated at a sampling frequency of 20 Hz. To ascertain
the dependability of the value of R in Section 3.2.1, it is essential to
compare the current data after binarization with the measured value
of R. It is observed that the value of R signifies the state of the
vibrating rod, while cyclical fluctuations of the current also demon-
strate it. Nonetheless, the presence of R is necessary because it serves
as a logistic variable, which aids in identifying the vibration period
characteristics. Through embedded logic, the data collection system can
receive real-time values for R. To enhance the effect of R, the current
must be addressed through binarization. When the value surpasses
the threshold, the outcome is assigned a value of 1. Otherwise, 0 is
achieved. As demonstrated in Fig. 10, the binarization outcome of
the current can be synced with the variation in R. By comparing the
binarization outcomes of R and the current, the identification precision
in Table 8 is 93.5%. Consequently, the value of R can determine
the four vibrating rod statuses (insertion, vibration, withdrawal, and
moving), as illustrated in Fig. 10(c).

For the velocity information of the vibration samples, the velocity
solution formulas presented in Section 3.2.1 were used to determine
the 3-axis angular velocity and 3-axis acceleration acquired by the
IMU. The original experimental data from the IMU are plotted in
Fig. 11. In this paper, the calculation of the instantaneous velocity of
the insertion of the vibrating rod took the relative form. The purpose of
such a calculation was to cleverly avoid the problem of error dispersion
caused by the IMU solution. The specific calculation process is shown
in Fig. 12. The average velocity is calculated as a characteristic of the
vibration cycle recorded in the specimens.

The extracted feature data of the vibration cycle samples were
summarized, and nine features were included, as shown in Table 9.

4.3. Comparison and selection of empirical models

To learn from the collected samples using supervised learning, it
is necessary to calibrate the quality level of each concrete vibration
sample. In this paper, experienced constructors are invited to calibrate
the extracted vibration samples to ensure the accuracy of the sample
target values.
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Fig. 8. Demonstration of actual verification operation.

Table 7
Calculation of concrete strength by rebound method.

10 rebound values 1 2 3 4 5 6 7 8 9 10 Strength
(mf c cu)

Average

Box No. Conversion value of concrete strength in the measurement area(f c
cu,i
)

Box 1
1 60.0 55.0 55.0 60.0 60.0 55.0 55.0 55.0 60.0 55.0 57

56.82 55.0 50.4 60.0 57.5 57.5 60.0 55.0 55.0 48.1 57.5 55.6
3 55.0 60.0 57.5 57.5 60.0 60.0 57.5 57.5 57.5 55.0 57.8

Box 2
4 52.7 55.0 52.7 57.5 55.0 52.7 50.4 50.4 55.0 50.4 53.2

55.8
5 57.5 57.5 57.5 60.0 55.0 60.0 60.0 60.0 60.0 55.0 58.3

Box 3
6 50.4 50.4 57.5 48.1 55.0 57.5 57.5 55.0 57.5 57.5 54.6

52.87 50.4 52.7 45.9 43.7 52.7 55.0 52.7 55.0 55.0 55.0 51.8
8 45.9 45.9 50.4 55.0 57.5 45.9 57.5 48.1 57.5 55.0 51.9

Fig. 9. Concrete surface after vibration: (a) Concrete vibration; (b) Side of the box;
(c) Top of the box.

This paper employs several mature supervised learning algorithms,
such as linear regression, K-Nearest Neighbour (KNN), logistic regres-
sion, decision tree, random forest, and SVM, to classify the concrete
vibration samples into different levels. The accuracy of these algorithms
are then compared.

Table 8
The recognition of accuracy.

Vibration time (s) Moving time (s) Total time (s)

Measurement based on R 1033.353 280.208 1313.562
Value 1104.66 208.902 1313.562
Accuracy 93.5%

Prior human classification calibration of the quality level of each
vibration is required for supervised learning algorithms. To increase the
credibility of the experiment, experienced workers were deliberately
invited to calibrate the samples beforehand. The calibration is 0 for
under-vibration, 1 for normal and 2 for over-vibration. The accuracy of
various algorithmic classifiers on vibration samples was measured using
the confusion matrix. The vertical axis of the matrix represents the
actual sample labels, while the horizontal axis represents the predicted
sample labels of the algorithmic classifiers. The diagonal of the matrix
represents the accuracy of the classifier’s prediction for that particular
class. Fig. 13 demonstrates that all algorithms perform better under-
vibration and over-vibration in all test results. The only difference lies
in the evaluation of normal vibration.

Fig. 14 shows the scores of the classifiers calculated under different
train sets. The decision tree outperforms the other four classifiers, while
the linear regression is the least accurate.
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Fig. 10. Signal data processing: (a) Current binarization; (b) Status of current recognition; (c) Comparison of the current and R.

Table 9
Vibration cycle samples.

Sample Insertion time Vibration time ... Insertion speed (y) Insertion speed ... Absorbed energy

1 0.248 2.949 ... 3.335 5.418 ... 1566.094
2 0.35 1.75 ... 1.467 4.741 ... 1212.545
3 0.248 0 ... 4.724 5.91 ... 116.939

... ...

... ...
29 0.252 21 ... 4.179 5.106 ... 11 152.733
30 0.253 12.845 ... 1.84 3.91 ... 7721.052

... ...

... ...
66 0.252 21.539 ... 4.59 5.27 ... 8620.401
67 0.25 25.741 ... 3.813 4.884 ... 6908.706

Fig. 11. Original data of IMU: (a) Acceleration curves; (b) Attitude angle curves.

To classify concrete vibration samples via unsupervised learning,
calibration of the concrete vibration sample class is unnecessary. This
paper employs nine common clustering algorithms (Table 10) to cluster
the vibration samples.

As shown in Fig. 15, the clustering results of different algorithms
based on features were visualized. The graph displays sample points,

Fig. 12. Speed initialization and calculation of average speed.
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Fig. 13. Comparison of five supervised learning algorithms.

with different colours representing varying levels of vibration quality.
Affinity propagation (AP, in Fig. 15(a)) and Density-Based Spatial
Clustering of Applications with Noise (DBSCAN, in Fig. 15(d)) cannot
achieve the expected classification effect, i.e. AP classifies all samples
one by one, whereas DBSCAN classifies the datasets into a category.
Therefore, the two algorithms cannot be used. Although the Mean
Shift (in Fig. 15(g)) and the Ordering Points To Identify the Clustering
Structure (OPTICS, in Fig. 15(h)) can achieve the goal of classification,
the four categories obtained are not the result that we wanted for
out method. Compared with the above four algorithms, Agglomer-
ative Clustering, Balanced Iterative Reducing, and Clustering using
Hierarchies (BIRCH), K-means, mini-batch K-means, and Gaussian Mix-
ture Model can achieve to classify the samples into three categories.
However, the silhouette coefficient (SC) and Calinski–Harabasz (CH)

coefficient of each algorithm need to be calculated so that the strengths
and weaknesses of the algorithm can be determined. The different SC
indices and CH indices of the algorithms are shown in Table 11. In
contrast, the K-means algorithm does a better job of classifying the
samples into the desired three categories.

To increase the independence of the data features and to alleviate
the problems caused by sample dimensionality, the data samples should
undergo dimensionality reduction via principal component analysis
and the K-means algorithm should be used to cluster the data again.
Correlation analysis was carried out on the sample features, as shown
in Fig. 16. Obviously, the correlation coefficient between the vibration
time and the absorbed energy of concrete reaches 94%, while the corre-
lation coefficient between the withdrawal speed (y) and the withdrawal
speed is 69%. For the correlation analysis of data features, we can find
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Fig. 14. Scores of the classifiers calculated under different train sets.

Fig. 15. Clustering effects of nine algorithms.
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Table 10
Clustering algorithms.

Clustering algorithm Description

Affinity propagation A graph-theoretic clustering algorithm that derives the final clustering
result by calculating the similarity between data points.

Agglomerative A bottom-up clustering algorithm that treats each data point as an initial
cluster and progressively merges them into larger clusters until a stopping
condition is reached.

BIRCH A clustering algorithm based on hierarchical clustering that can handle
large-scale datasets quickly and works well for clusters of arbitrary shape.

DBSCAN A density-based clustering algorithm that efficiently discovers arbitrarily
shaped clusters and is able to handle noisy data.

K-Means An algorithm that iteratively searches for optimal cluster centre locations
until a state of convergence is reached.

MiNi-Batch k-means An algorithm for optimized K-Means that uses a small subset of data to
reduce computation time while still attempting to optimize the objective
function.

Mean Shift A density-based non-parametric clustering algorithm that identifies clusters
in data by finding the location with the highest density of data points.

OPTICS A density-based clustering algorithm that automatically determines the
number of clusters and also finds clusters of arbitrary shapes and is able
to handle noisy data.

Gaussian Mixture Model A clustering algorithm based on probability distributions that assumes that
each cluster conforms to a different Gaussian distribution (the data within
each cluster will conform to a certain data distribution).

Table 11
Comparison of algorithmic strengths and weaknesses.

Algorithm Silhouette coefficient Calinski–Harabasz

Agglomerative silhouette 0.60311939 199.878559
Birch 0.60311939 199.878559
K-means 0.577387272 218.6854658
Mini-Batch-KMeans 0.601892569 210.9485397
Gaussian Mixture 0.398971454 132.2793682

Fig. 16. Correlation analysis of vibration samples data.

redundant information in the original high-dimensional space as well
as a noisy sound system, which will affect the accuracy, so the data can
be reduced to achieve the extraction of effective information synthesis
and useless information discarded.

In this paper, Principal Component Analysis (PCA) is used to trans-
form a series of potentially linearly correlated variables of a sample into
a new set of linearly uncorrelated variables, so that the new variables
can be used to demonstrate the characteristics of the data in smaller
dimensions. Fig. 17 shows the results of cluster analysis after PCA
based on the K-means method. Clustering can achieve an excellent
effect according to the characteristics of the vibration samples. The
green parts indicate quality level of normal vibration, the red parts
indicate under-vibration, and the yellow parts indicate over-vibration.
The K-means treated with PCA performs better in terms of sample
compactness than does the standalone K-means algorithm.

The sample data will be manually labelled with vibration grade us-
ing the combination of the mixing and solidification manual combined

Fig. 17. K-Means clustering after PCA: (green) normal vibration; (red) under-vibration;
(blue) over-vibration.

with the advice given by professional vibration workers to compare the
clustering effect as shown in Table 12. The average accuracy reaches
0.903.

5. Discussion

This study is the first attempt to apply data sampling and ma-
chine learning methods to evaluate the internal concrete vibration
quality. Compared to previous studies, the following innovations and
modifications have been made.

(1) In terms of hardware, the concrete vibration data acquisition sys-
tem innovatively integrates the IMU and the current sensor. The
IMU has the characteristics of high integration, high accuracy in
a short time, and strong robustness. The idea of this paper is to
use the concept of relative speed to calculate the speed with an
IMU. In addition, the cost of concrete vibration equipment will
be reduced. In addition, IMUs are a futuristic technology with
great potential.

(2) The process of vibration is divided into n cycles. Typical data
features for each of the four stages in a cycle are extracted
to form a sample concrete vibration cycle. These samples can
be used as vibration experience on which machine learning
algorithms can base their vibration quality decisions, achieving
independence from manual evaluation.

(3) This study evaluated machine learning algorithms for classi-
fying concrete vibration samples. It compares supervised and
unsupervised learning under different test sets to identify the
algorithm that best classifies vibration quality levels. This paper
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Table 12
Comparison of clustering results with human calibration results.

Manual labels Prediction labels

Labels Over vibration Normal Under vibration Over vibration Normal Under vibration
Number 33 18 17 32 16 20
Accuracy 0.970 0.889 0.850
Average accuracy 0.903

proposes a method for classifying concrete quality classes based
on a rudimentary algorithmic model. One of the future research
directions is to explore a better learning algorithm for vibration
quality class classification criteria.

However, there are still some limitations that warrant further re-
search. First, this study proposes a hardware prototype solution to
calculate the velocity of a vibrating rod. Although the IMU result
can be solved, the positioning accuracy is not validated in reality.
Perhaps integrated navigation can improve positioning accuracy, but
an interdisciplinary method may be required to solve this problem.
Second, due to the limitations of the experimental conditions, it must
be noted that the data sample size for this paper is only 68. As such, it
is likely that this sample size is too small and may lead to overfitting
of the data. It is important to collect a larger number of vibration
cycle samples in future work to characterize and analyse the vibration
quality level thoroughly as well as develop subsequent determination
criteria. In addition, we specifically find that when employing the K-
means clustering method to cluster vibration cycle samples, this study
deliberately divided the samples into three categories. However, this
study investigated the size of the silhouette coefficient for various
numbers of clusters, as illustrated in Fig. 18. The K-means method
yielded the lowest silhouette coefficient score when the vibratory qual-
ity effects were partitioned into the three typical categories. Upon
closer examination of the samples, it was found that the presence of
the two samples with zero vibration time may have contributed to
the phenomenon of missing vibrations. Due to the presence of missing
vibration, there were four categories in the samples, including under
vibration, over vibration, normal, and 0 vibration time. This resulted
in the highest silhouette coefficient at K = 4, which is also a realistic
outcome. The next step is for the trained clustering model to be
applied in actual vibration operations to provide real-time feedback
of quality ratings to the construction crew, which is a significant area
for future research. The process is demonstrated in Fig. 19. Using the
vibration cycle extraction principle outlined in this paper, N vibratory
cycle samples are generated by extracting the vibration behaviour. The
clustering training model is employed to classify the quality level of the
resulting vibration samples. Real-time visualization of the quality level
of the vibration cycle enables construction personnel to monitor the
vibration operation as it progresses. The fourth point pertains to the
metric measuring leak vibrations, which is not covered in this study.
Based on the sample data, the average movement time is approximately
4.12 s, while the dispersion time of the inertial sensor is approximately
2 s; however, these values fail to meet the positioning required level
of accuracy. Therefore, future research should explore the use of more
expensive sensors or incorporate combined navigation to enhance leak
metrics.

6. Conclusions

This paper presents a complete set of concrete vibration data collec-
tion methods with two aspects: an evaluation method and hardware. A
general standard of machine learning is established to evaluate the final
concrete vibration quality level.

(1) The hardware of the concrete vibration data collection method
integrates the IMU and a current sensor. The actual application
shows that this hardware combination has a simple composi-
tion, is reliable, expandable, and robust, and has a low cost.

Fig. 18. Different K corresponding to silhouette coefficient.

Fig. 19. Prediction model.

This significantly minimizes the time cost and financial outlay

required for the construction of hardware in concrete vibration

monitoring, thereby accelerating the overall project timeline.
(2) The experimental results demonstrate that the classification pre-

diction accuracy reaches 90.3% in this paper compared with

the traditional manual calibration results. The pioneering use

of vibration behavioural feature samples to classify and pre-

dict vibration quality levels has the potential to promote the

application of machine learning techniques to engineering and

construction.

This paper represents a significant advance in the field of vibration

monitoring, offering a novel approach to addressing the limitations of

previous studies that have focused on the issue of missing vibrations in

real time. The vibration samples captured in this study offer valuable

engineering experience that can be retained and serve as a benchmark

for future vibration operations. As the number of vibration samples

increases in the future, this experience will become increasingly so-

phisticated, leading to enhanced vibration quality. Concurrently, the

deployment of machine learning methodologies for the classification

and assessment of vibration quality has also nearly mitigated the trend

of declining talent in contemporary construction work.
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