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A Mixed Samples-Driven Methodology Based on
Denoising Diffusion Probabilistic Model for

Identifying Damage in Carbon Fiber
Composite Structures

Peng Chen , Chaojun Xu , Zhigang Ma , and Yaqiang Jin

Abstract— X-ray imaging is a common nondestructive detec-
tion method for carbon fiber composite structures (CFCSs) that
is useful in identifying damage in CFCS-cored wires. In recent
years, deep learning models that incorporate classification and
objection detection have become frequently utilized by the non-
destructive testing industry. These models typically rely on the
assumption that there are sufficient annotated failure samples
from history that have been measured and can be used for
training. Unfortunately, in real-world measurements, it is often
challenging to obtain these types of samples. To address the
issue of small sample size in such scenarios of real-world field
testing, this article propose a mixed samples-driven methodology
based on the denoising diffusion probabilistic model (DDPM) for
identifying damage in CFCS. First, new samples are synthesized
through DDPM module to improve the robustness of a small
sample size. Then, the synthesized sample, along with a small
number of authentic samples measured from real-world testing,
are then integrated and fed into a DenseNet-based module. Lastly,
the mixed samples-driven architecture is then constructed and
employed to diagnose the damage of CFCS. The effectiveness of
this approach is demonstrated through experiments in real-world
field testing.

Index Terms— Carbon fiber composite structures (CFCSs),
damage diagnosis, data augmentation, denoising diffusion prob-
abilistic model (DDPM), nondestructive testing.

I. INTRODUCTION

CARBON fiber composite structures (CFCSs) have been
extensively utilized in a variety of industries, including
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wind turbine blade manufacturing, automotive production, and
the production of power grid equipment [1]. CFCS-cored
aluminum conductor composite core (ACCC) wire has gained
popularity for use in power grid equipment due to its excellent
conductivity, lightweight properties, high tensile strength, and
corrosion resistance. However, CFCS-cored ACCC wire is
often subjected to harsh conditions such as high temperatures,
corrosion, fatigue, creep, and prolonged stress, which can
lead to damage and various types of failures. These failures
can inevitably result in unexpected maintenance expenses.
An effective damage diagnosis approach for overhead ACCC
wire can help prevent failures by providing early warning and
enabling better maintenance strategies, ultimately reducing the
costs of operation and maintenance.

Historically, the assessment of damage to ACCC wires has
been carried out by human inspection, which can be costly,
risky, and time-consuming. In contrast to manual detection,
several nondestructive technologies have been developed for
overhead ACCC wires. These includes sensors attached to
the wires, such as ultrasonic gilded wave (UGW) [2], power
line carrier [3], as well as sensors integrated into robotics,
such as infrared ray [4], electromagnetic induction [5], eddy
current [6], stress [7], sound wave [8], and others. However,
some of these technologies may be subject to factors such
as ambient illumination that can impact their accuracy, and
certain materials used in ACCC wire construction may not be
compatible with certain technologies, such as eddy current-
based methods. In some cases, the use of a magnetic cover
on the composite core of ACCC wires may be required to
address these issues when using nondestructive technologies
for detection in the grid [9].

Despite their potential, the previously mentioned techniques
have proven inadequate for reliable damage detection [10].
According to recent research [11], [12], X-ray imaging has
demonstrated potential in identifying internal ACCC wire
damage using nondestructive detection techniques. One of
its advantages is that it can transmit X-rays through thick
composite components, making it possible to inspect thicker
materials. Moreover, X-ray imaging can detect both surface
and subsurface defects and provide a record of the inspection.
Deep learning algorithms, particularly those involving classi-
fication and object detection, have been widely used in the
field of nondestructive testing [12], [13], [14], [15], [16], with
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researchers developing robots equipped with portable X-ray
generators and deep learning-based defect diagnostic systems
to detect ACCC wire defects. Gao et al. [17] developed a
robot that includes a portable X-ray generator, a DR detecting
pane for gathering X-ray images, and a deep learning-based
defect diagnostic system combined with manual evaluation to
discover defects to ACCC wires. Wei et al. [18] provide an
automatic defect detection approach based on deep convo-
lution network (DCN) for defect detection of the aluminum
conductor carbon fiber composite core through X-ray images.
However, these approaches, particularly the supervised deep
learning algorithms mentioned above, require a large number
of labeled failure data for training. In practice, obtaining
sufficient amounts of labeled failure samples can be difficult,
making these approaches somewhat challenging to implement
in real-world industrial applications.

In real-world testing, the quality of captured X-ray images
is often compromised by noise, spurious edges, and other
environmental interference. This can be especially problematic
when examining CFCSs, as the low contrast of the carbon core
and the high energy absorption of the outer steel core can make
it difficult to identify cracks. This can result in data imbalance,
where the number of samples for a specific type of defect may
be limited, leading to potentially misleading deep learning per-
formance estimates [19]. To address this issue, researchers [20]
have explored ways to design deep learning models to avoid
such inaccurate estimates, particularly in cases of small sam-
ple sizes. Generative adversarial networks (GANs) [21] have
frequently been regarded as state-of-the-art generative models
in terms of sample quality, but they are known for being
difficult to train and prone to mode collapse [22]. On the
other hand, diffusion models [23], which are likelihood-
based, provide more diversity and a steady training process,
may be a more practical solution for dealing with these
issues.

As discussed above, few investigations for addressing the
challenge of small sample sizes in nondestructive testing of
CFCS-cored ACCC wires. In this article, a mixed samples-
driven methodology based on the denoising diffusion prob-
abilistic model (DDPM) for identifying damage in CFCSs is
proposed. This approach leverages the parameterization of dif-
fusion models to synthesize a certain number of high-quality
samples through equivalency with denoising score matching
and annealed Langevin dynamics. These synthesized samples
are then combined with a limited number of real samples
and fed into a dense-based diagnosis module to construct the
mixed samples-driven model. Testing on a dataset from actual
field testing shows that the proposed approach is effective
at recognizing defects in CFCS-cored ACCC wires, such as
fracture, sawing, shifting, and splitting.

The structures of this article is outlined as follows.
In Section II, the DDPM and the primary topology of
DenseNet are discussed. The proposed mixed samples-driven
methodology is then presented in Section III. A case study
from real-world field testing is presented in Section IV, and the
fundamental perspective of the proposed methodology and a
summary of the results are provided in the concluding section,
Section V.

II. RELATED THEORY

A. Denoising Diffusion Probabilistic Model

In this section, the derivation of the DDPM is examined. It is
noted that several simplifying assumptions were made in this
derivation, including the use of a fixed noising process q that
adds diagonal Gaussian noise at each time-step, as reported
in [20].

Let q(x0) be the density of input data x0, with the index
0 representing the fact that the data is uncorrupted (raw).
To construct a forward noising process q that yields underlying
data x1 through xT from this set of input data, the Markovian
process can be utilized. This process involves introducing
Gaussian noise at each time step t with variance βt , where
βt is a value in the range (0, 1). Specifically, the process can
be expressed as follows:

q(x1, . . . , xT | x0) :=

T∏
t=1

q(xt | xt−1) (1)

q(xt | xt−1) := N
(

xt ;
√

1 − βt · xt−1, βt · I
)

∀t ∈ {1, . . . , T } (2)

where T is the number of diffusion steps, β1, . . . , βT ∈ [0, 1)

are hyper-parameters that denote the variance across diffusion
steps, and I is the identify matrix with dimensions equal to
those of the input data x0. The function N (x; µ, σ) represents
the normal distribution with mean µ and covariance σ that
produces x . This recursive formulation appears to have the
unique advantage of allowing direct sampling of xt when t is
randomly selected from a uniform distribution, as expressed
in the following statement: ∀t ∼ U(1, . . . , T ) :

q(xt | x0) = N
(
xt ; ᾱt · x0,

(
1 − ᾱt

)
· I
)

H⇒ xt =

√
ᾱt · x0 + zt ·

√
1 − ᾱt (3)

where zt ∼ N (0, I), αt = 1 − βt and ᾱt =
∏t

i=1 αi .
The posterior p(xt−1 | xt , x0) can be determined using

Bayes theorem in term of β̃ t and µ̃t (xt , x0), which are speci-
fied as follows:

β̃ t :=
1 − ᾱt−1

1 − ᾱt
βt . (4)

µ̃t (xt , x0) :=

√
ᾱt−1βt

1 − ᾱt
x0 +

√
αt
(
1 − ᾱt−1

)
1 − ᾱt

xt . (5)

p(xt−1 | xt , x0) = N
(
xt−1; µ̃(xt , x0), β̃ t I

)
. (6)

A new sample can be generated by starting with Gaussian
noise at xT ∼ N (0, I) and then proceeding backwards using
the reverse distribution p(xt−1 | xt ), which is defined as
N (xt−1; µ(xt , t), 6(xt , t)). Once this reverse distribution has
been determined, it can be approximated using a neural
network that takes as input the noisy data xt and the time-step
embedding t , and uses this information to predict the mean
µθ (xt , t) and covariance 6θ (xt , t)

pθ (x1, . . . , xT ) := p(xT ) ·

T∏
t=1

pθ (xt−1 | xt ) (7)

pθ (xt−1 | xt ) := N (xt−1; µθ (xt , t), 6θ (xt , t)). (8)
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A variational autoencoder [24] is created by combining p
and q , and the variational lower bound (VLB) can be computed
as follows:

Lvlb = E

[
− log pθ (x0 | x1) + KL(p(xT | x0)∥q(xT ))

+

∑
t>1

KL(pθ (xt−1 | xt , x0)∥qθ (xt−1 | xt ))

]
. (9)

In (9), the Kullback–Leibler (KL) divergence is used to
measure the difference between two probability distributions.
With the exception of the first term, each term in the equation
is a KL divergence between two Gaussian distributions. The
second term does not depend on the parameter θ , and will be
close to zero if the forward noising process effectively destroys
the data distribution so that q(xT | x0) ≈ N (0, I). The last
term indicates that the neural network is trained to make the
posterior pθ (xt−1 | xt ) at each time step t as close as possible
to the true posterior of the forward process when conditioned
on the original sample. Additionally, it can be shown that
the posterior pθ (xt−1 | xt ) is a Gaussian distribution, which
allows for closed-form expressions for the KL divergences.

To improve the quality of the output samples, an alternate
objective was introduced in [23]. This objective focuses on
training a neural network to measure noise from arbitrary
instances generated using (3), as follows:

Lsimple = Et∼[1,T ]Ex0∼p(x0)Ezt ∼N (0,I)∥zt − zθ (xt , t)∥2 (10)

where E is the expected value, and zθ (xt , t) is a network
predicting the noise in xt . In [23], the covariance 6θ (xt , t) to
a constant value and the µθ(xt , t) can be rewrite as follows:

µθ =
1

√
αt

·

(
xt −

1 − αt√
1 − ᾱt

· zθ (xt , t)

)
. (11)

The reverse process is defined by pθ (xt−1 | xt ) [as shown
in (8)], but the neural network is not trained to directly
estimate the mean and covariance of this distribution. Instead,
it is trained to measure noise in the input, and the mean is
calculated using (11), with the covariance set to a constant
value.

B. Primary Topology of DenseNet

The DenseNet topology has a structure in which every
layer of the feed-forward neural network is closely connected
to all the layers that follow it [25]. This design allows
for maximum information flow throughout the network. The
DenseNet topology consists of three dense blocks connected
by transition blocks, and each of these blocks is made up of
basic blocks.

1) Basic Blocks: The DenseNet architecture is built on a
low-level structure called basic blocks. Each basic block is
made up of four layers that are used to concatenate the input:
a batch normalization layer, a rectified linear unit (ReLU)
activation layer, and a 3 × 3 convolutional layer with a stride
of 1. Fig. 1 shows these blocks, which include a convolutional
layer with k filters.

Fig. 1. Basic blocks.

Fig. 2. Transition blocks.

2) Transition Blocks: Transition blocks, which connect the
dense blocks in a DenseNet architecture, are constructed using
the following sequence of layers: a batch normalization layer,
a ReLU activation layer, a 1 × 1 convolutional layer with a
stride of 1 and k output filters, where k is the number of basic
blocks per dense block multiplied by the size of the input
to the previous dense block. After the convolution operation,
dropout is applied at a rate of 0.2, followed by a 2 × 2 average
pooling layer with a stride of 2. Fig. 2 shows the transition
layers.

3) Dense Blocks: The DenseNet architecture used in this
work contains three dense blocks, which are made up of an
initial input and several basic blocks, and feature permissible
skip connections within the dense blocks. The depth of each
dense block is determined by dividing the overall depth by the
number of trainable layers that are not located in the dense
blocks.

III. PROPOSED ARCHITECTURE

In this section, a mixed samples-driven architecture for
detecting damage in CFCSs is proposed. The architecture,
shown in Fig. 3, consists of a DDPM module, a DenseNet-
based module [25], and a mixed samples-driven module.
The DDPM module is used to synthesize new samples to
compensate for the small sample size commonly encountered
in real-world field testing. These synthesized samples, along
with a small number of authentic samples collected from real-
world testing, are then integrated and fed into the DenseNet-
based module. The mixed samples-driven architecture is then
constructed and employed to diagnose damage in the CFCSs
of ACCC wires.

As described in (7) and (8), a new sample x̃0 can be
generated by starting at x̃T and then moving backwards using
pθ (xt−1 | xt )

x̃0 = x̃T ·

T∏
t=1

pθ (xt−1 | xt )

= x̃T ·

T∏
t=1

N (xt−1; µθ (xt , t), 6θ (xt , t)) (12)

where x̃T is drawn from a normal distribution with mean 0 and
identity covariance matrix, N (0, I). The covariance 6θ (xt , t)
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Fig. 3. Proposed mixed samples-driven architecture for damage identifying in CFCS-cored ACCC wires.

Fig. 4. Flowchart of proposed model.

can be approximated using a neural network, which takes as
input the data xt and the embedding at time-step t , and is used
to predict the mean µθ (xt , t) and covariance 6θ (xt , t).

After the synthetic sample produced through DDPM’s syn-
thesis method, a mixed samples-driven manner is designed to
integrate the synthesis and real-measurement, as it is illustrated
in Fig. 3. Thus, the mixed sample yMIXcan be determined as
follows:

yMIX = M
(
x̃0, x0

)
= M

(
x̃T ·

T∏
t=1

N (xt−1; µθ (xt , t), 6θ (xt , t)), x0

)
(13)

where M denotes the mixed samples-driven manner, x0 is the
original small size of sample, and x̃0 is the sample, which is
produced by DDPM’s synthesis technique.

As mentioned previously and illustrated in Fig. 3, DenseNet
is used to enhance the accuracy of damage identification. This
is achieved by streamlining the information, strengthening
reusable features, and upgrading the features themselves. The
output of the r th layer, denoted as zr , can be determined as
follows:

zr = Hr
([

z0, z1, . . . , zr−1
])

(14)

where the function Hr (where r is equal to 1, 2, 3, . . .) is
composed primarily of batch normalization, the ReLU, and
convolution. The features produced in layers 0, 1, . . . , r−1 are
concatenated and represented as [z0, z1, . . . , zr−1].

The output z̃r for a small batch data, denoted by B, can be
computed as follows:

zBN =
ẑr − µB√
σ 2

B + ε

(15)
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z̃r = γ · zBN + β (16)

where, the normalization operation of the input data, repre-
sented by zBN, is utilized in this case. The r th layer input
of BN, denoted by ẑr = [z0, z1, . . . , zr−1], is also taken
into consideration. The mean and variance of the batch data,
indicated by µB and σ 2

B, respectively, are both relevant to the
calculation. Additionally, the learnable reconstruction param-
eters of scale and shift, represented by β and γ , respectively,
allow the network to learn and retrieve the original distribution
of features. These parameters enable the network to learn and
retrieve the original distribution of features.

The damage diagnosis module utilizes a soft-max classifier
to train on the feature vectors obtained from the previ-
ously mentioned DenseNet-based model. These feature vectors
come from a mixed sample, denoted by {(y(i)

MIX, l(i)); i ∈

1, . . . , N , l(i) ∈ 0, . . . , k − 1}, where y(i)
MIX represents the i th

feature vector of the input sample and l i is the corresponding
label. For each sample in this set, the probability of belonging
to a particular category is given by the following equation:

p
(

l(i) = j | y(i)
MIX; θ

)
=

eθT
j y(i)

MIX∑k
j=1 eθT

j y(i)
MIX

(17)

where the probability that y(i)
MIX belongs to the j th category,

denoted by p(l(i) = j | y(i)
MIX; θ), represents the probability

that the sample is divided into different types of damage. This
probability is equivalent to the probability that the sample
belongs to the j th category.

The function for evaluating damage using soft-max is
expressed as follows:

hθ

(
x (i)

MIX

)
=


p
(

l(i) = 1 | y(i)
MIX; θ

)
p
(

l(i) = 2 | y(i)
MIX; θ

)
...

p
(

l(i) = k | y(i)
MIX; θ

)



=
1∑k

j=1 eθT
j y(i)

MIX


eθT

1 y(i)
MIX

eθT
2 y(i)

MIX
...

eθT
k y(i)

MIX

 (18)

where θ represents the model parameters and
∑k

j=1 eθT
j y(i)

MIX
is the operation that normalizes the probabilities.

IV. REAL-WORLD FIELD TESTING CASE STUDY FOR
EXPERIMENTAL VERIFICATION

In this section, an experimental investigation is devel-
oped for verifying the efficiency of damage assessment with
CFCS-cored ACCC wires, and its flowchart is shown in Fig. 4.
First, as shown in Section IV-A, a sample comparison between
DDPM’s synthetic sample and data collected from a testing
field in the real world. The data acquisition and data prepro-
cessing are, respectively, specified in Sections IV-B and IV-C.
Afterward, the damage assessment and results-based analysis
is provided in Section IV-D. Section IV-E sketches the training
process and comparative analysis. Furthermore, through using

TABLE I
QUANTITATIVE COMPARISON OF REAL MEASUREMENT AND SYNTHESIS

t-SNE technique, the captured feature manifold is visualized,
and Section IV-F illustrates typical indicators for evaluating
the proposed framework.

A. Sample Comparison for Real-Measurement and Synthesis

A comparative case study is conducted to evaluate the qual-
ity of a synthetic sample produced using DDPM’s synthesis
method. The synthetic sample is compared to real-world data
collected from a testing field to determine the accuracy and
reliability of the synthetic sample. As shown in Fig. 5, any
discrepancies or variations between the synthetic sample and
the real-world data may be identified by comparing the two
sets of data.

The real-measurement and synthesis of the four types of
failures, including shifting, splitting, fracture, and sawed, are
shown in Fig. 5. The real-measurement and synthesis images
provide a detailed look at the severity of the failures and
their pattern of occurrence in the experiments. They can
identify the distinctive characteristics of each kind of failure,
as shown in the zoomed region of Fig. 5. While there may
be some small variations among the samples, the majority of
them exhibit similar failure characteristics. This information
is useful for understanding the causes behind various failure
patterns and for developing strategies to prevent future failures.
Real-measurement and synthesis images can be utilized to
gain valuable insight into how these failures occurred and then
utilize that information to improve the quality of the synthetic
sample or refine the DDPM model. Furthermore, this makes it
possible to analyze the failures in a more precise and consistent
manner, making it easier to identify trends and potential
explanations of the failures. In short, this comparison is crucial
in general to make sure that the synthetic sample generated by
the DDPM model accurately reflects the real-world data that
it is intended to simulate.

The degree of similarity between real-measurement and
synthesis is quantified using a common metric, such as cosine
similarity [26], and the analysis’s results are presented in
Table I. Due to the cosine similarity values being all above
0.980, the quantitative analysis reveals that the synthesis
sample from the four types of failure are very comparable
to the real measurement.

B. Data Acquisition

To measure the X-ray images in ACCC wires with CFCSs
core, a data acquisition system is developed, which can be seen
in Fig. 6. The data acquisition system comprises three mod-
ules, such as the data collection modules, the data transmission
module, and the data analysis module. In data collection
module, see Section I in Fig. 6, an image collection component
equipped with a portable and cold cathode X-ray source TXR-
C1R150P-08 as well as a moving robot is designed to climb
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Fig. 5. Sample comparison of synthesis and real-measurement. (a) X-ray image of a shifting sample and it is zoomed region. (b) X-ray image of a splitting
sample and it is zoomed region. (c) X-ray image of a fracture sample and it is zoomed region. (d) X-ray image of a sawed sample and it is zoomed region.

on the ACCC wires. The robot is composed of a pair of
independent rubber wheels, and it is powered by a dc motor
with reducers. The average movement speed is 6.5 m/min. The
portable X-ray generator and a digital radiography dashboard
are incorporated at the bottom of the data collecting robot, and
the deployment location allows the robot to pass obstacles
without interfering with the vibration damper. The data of
X-ray images could then be uploaded to cloud storage via
WIFI graphics transmission (see Section II in Fig. 6). Finally,
the measured data can be delivered to a workstation for fault
detection and analysis (see Section III in Fig. 6).

In [1], it outlines the major failure accidents of ACCC wires
with CFCS core, which can be classified as tensile failure in
strain clamps and bending fracture produced by nonstandard
tools in manufacture. An ACCC wire cross section diagram
can be found in Fig. 7. The typical damaged types can be
illustrated in Fig. 8. Fig. 8(b) is an X-ray image of a shifting,
as well as cracks with random lines that provide a little risk.
Fig. 8(c) depicts an X-ray image of a splitting of a crack with
irregular lines that pose a medium threat. Fig. 8(d) illustrates
a fracture in which the carbon fiber core has ruptured and the
strained section is the exterior aluminum wire. This is a huge
weakness. sawed is illustrated in Fig. 8(e) as a vacancy formed
by the carbon fiber core being pulled apart following fracture.
This condition is exceedingly weakness.

C. Data Preprocessing

Several procedures, including as segmentation, straighten-
ing, and Gray-level normalization, should be performed to
guarantee the consistency of the training data in position
and gray distribution (see in Fig. 9). First, due to gravity’s
influence, the ACCC wires are not horizontally parallel to
the ground in the measured image. Then, straightening and
shareholding are necessary to extract straight ACCC lines,
enabling ACCC to be located consistently in every image.
The coordinates of the centered pixels on image for every
vertical line serve as a reference for straightening, and trans-
lation is conducted for each line based on the vertical offset.
Following that, variations in X-ray incident angle and detector
plan response cause brightness inconsistency in the horizontal

direction, leading defects to emerge differently in various
positions. Thus, the brightness and contrast is utilized for rem-
edying the inconsistency in single image or different images.
Lastly, vertical integration is therefore replaced with vertical
template convolution to alleviate discontinuities. To achieve
similar color distribution, histogram specifications are assessed
for contrast discrepancies in various images.

According to Fig. 7, it is discovered that the defect position
is determined by the central portion of the raw X-ray image.
Consequently, the raw image can be divided into small patches
using a sliding window with a length of window size lwin and
an overlap of ls . In Fig. 9, it is shown that the patches are
overlap to prevent defects along the patch boundary. Since
the exterior aluminum wire gap will create interference dark
stripes that could be misinterpreted as defects. As a result,
the data preprocessing procedure should concentrate only the
carbon core area. According to their morphological properties,
there are four different types of defects: shifting, splitting,
fracture, and sawed, as shown in Fig. 8. In this real-world
field testing, the presence of noise, spurious edges, and other
unexpected environmental interference typically reduces the
quality of the measured X-ray image. The amount of X-ray
images that have been collected is therefore quite limited. The
measurement of 400 raw X-ray images involves five different
types of samples, including intact, shifting, splitting, fractured,
and sawed samples. Due to the insufficient defective samples,
the DDPM is utilized to produce additional varieties of sam-
ples. Ultimately, a total of 6000 raw samples are obtained.
The arrangement of these samples between the training and
test datasets is shown in Table II, and the size of each sample
is 128 × 128 × 1.

D. Damage Assessment and Results-Based Analysis

In this section, the current state-of-the-art models, such as
ShuffleNet [27], RepVGG [28], ResNet50 [29], ResNet101
[29], and DenseNet [30] are selected for comparison to eval-
uate the performance of the proposed architecture in damage
identification of CFCS-cored ACCC wires.

An indicator like test accuracy is typically utilized to reveal
the capacity of deep learning models in damage categorization.
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Fig. 6. Damage detection schematic in field deployment testing.

TABLE II
ARRANGEMENT OF TRAINING AND TEST DATASETS

Fig. 7. Cross section diagram of ACCC wires.

Fig. 8. Typical damaged ACCC wires with CFCS cores. (a) X-ray image of
an intact sample. (b) X-ray image of a shifting sample. (c) X-ray image of a
splitting. (d) X-ray image of a fracture sample. (e) X-ray image of a sawed
sample.

The damage identification results of ShuffleNet, RepVGG,
ResNet50, ResNet101, DenseNet are depicted in Fig. 10. The

Fig. 9. Data preprocessing schematic illustration.

test accuracy approaches approximately 91.0% for model like
ShuffleNet, yet it is unsteady with a greater fluctuation, and
the average test accuracy falls to the lowest levels with 89.1%
(see in Fig. 11). In contrast to ShuffleNet and RepVGG, the
test accuracy for ResNet-based algorithms like ResNet50 and
ResNet101 is nearly steady and achieved at around 90.5%.
DenseNet is connected to each layer directly and in a feed-
forward manner, enabling effective features flow and gradient
propagation. This makes DenseNet is very beneficial for tasks
like segmentation and image classification. As a whole, the
maximum test accuracy of DenseNet is 91.1%. Compare
to typical DenseNet, in the zoomed region in Fig. 10, the
test accuracy of our proposed models achieves the greater
performance, which is roughly to 93.1%, and this indicates
that it is performing very well on the test dataset. By feature
manifold learning among the mixed samples, which incor-
porates the features from synthesis sample and a limited
number of real field testing sample, our proposed model may
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Fig. 10. Comparison of model accuracy across different types of models.

Fig. 11. Box plot for accuracy comparison.

gain more broad diagnostic information and develop into a
more effective classifier for damage diagnoses. Furthermore,
to visualize the test accuracy distribution and identifying
potential outliers of the aforementioned models, a box plot
is depicted in Fig. 11. As can be observed, the test accuracy
ranges for ShuffleNet and RepVGG are broader, whereas those
for ResNet50, DenseNet and our proposed model show a very
minor variations.

E. Training Process and Comparative Analysis

A determination of the hyperparameters is essential for the
successful training of the proposed architecture. In the earlier
work, Chen et al. [14] and Ho et al. [23] offers a number of
valuable learning curves that are beneficial for debugging and
determining hyperparameters. After each set of pooling layers
and fully-connected layers, the activation function used in this
case is the ReLU. For the input layer and each activation layer,
batch normalization is performed with a momentum value of
0.9. Each convolution layer has 12 input filters added to it.
Sixteen basic blocks and 16 transition blocks are connected
to each dense block, as it is shown in Fig. 3. The training
uses an adaptive moment estimation (Adam) optimizer with a
learning rate of 0.0001, and it runs for 50 epochs. The growth
rate is set to 12.

In the testing process, there is a correlation between epochs
and loss, as seen illustrated in Fig. 12. In the early stages,
with steadily increasing epochs, loss value has a significant
downward trend in training process. Nevertheless, as the
epochs approached 40, the decreasing trend of loss value
flattened out. This could be due to the performance of the
models discussed above increases with the number of iterative
trainings, whereas when a certain number of times is reached,

Fig. 12. Training loss in different types of models.

the models performance trends to stabilize. At this stage, extra
training is a time and computing resources waster that does
not boost better results. Therefore, appropriate epochs are
advantageous for training models. The epochs in our proposed
model are stable and coincide with those in common models
like ShuffleNet. In contrast, models such as RepVGG, ResNet-
based, and DenseNet achieves better, as seen in Fig. 12.

In this case, the algorithms are implemented with PyTorch
and are running on a platform with an AMD Ryzen 9
5950X 16-core CPU, 64G of DDR4 memory, and an
Nvidia RTX3090Ti GPU for the proposed architecture’s
training.

F. Quantitative Assessment Analysis

To visualize and interpret the captured latent features by the
aforementioned models, a dimensionality reduction technique
(t-SNE [14]) is utilized for comparison. The feature manifold
representation created by t-SNE can be seen in Fig. 13, which
offers a clear and understandable perspective of the underlying
data. Using t-SNE, it is possible to quickly identify data
clusters and patterns that may not have been immediately
visible in the past. This enables us to comprehend the data
better and aids in decision-making.

The corresponding captured feature manifolds for the typ-
ical models, such as ShuffleNet and RepVGG, are illustrated
in Fig. 13(a) and (b), receptively. In both models, the scatter
points for the intact condition are well-clustered together or
separable. This indicates that the models are able to accurately
identify and distinguish the intact condition from other states.
However, the scatter points for the other states, such as the
fracture and splitting modes, do not cluster together. Instead,
they are intersected and overlapped with each other, which
imply that the models may have difficulty distinguishing
between these states. This is most likely a result of the data’s
intrinsic complexity and the difficulties in precisely identifying
and interpreting the hidden properties in these states. To further
evaluate the classification models, the confusion matrix is
employed to categorize the captured feature into various labels,
as shown in Fig. 14(a) and (b). As an illustration, the feature
manifold of different types of failures in the RepVGG model
are overlapped, with the exception of the intact state. This
implies that this model may have difficulty distinguishing
between these different types of failure modes.

Likewise, the visualization of the feature manifold rep-
resentation for the ResNet-based models is depicted in
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Fig. 13. Feature visualization through t-SNE. (a) ShuffleNet. (b) RepVGG. (c) ResNet50. (d) ResNet101. (e) DenseNet. (f) Ours.

Fig. 14. Classifying performance through confusion matrix. (a) ShuffleNet. (b) RepVGG. (c) ResNet50. (d) ResNet101. (e) DenseNet. (f) Ours.

TABLE III
F1 SCORE OF DIFFERENT APPROACHES

Fig. 13(d) and (e). Numerous manifestations of the failures,
such as splitting and fracture, extensively overlap. The set of
feature manifold overlap indicates that the model is unable to
effectively capture the underlying patterns and relationships in
the data, which are necessary to discriminate between various
forms of failure.

However, since relatively few features manifold distribu-
tion of splitting and fracture are involved, as shown in
Fig. 13(f), the feature manifold distribution from almost
all failures can be clearly distinguished by our proposed
model. This reveals that our proposed model can accurately
capture and discriminate the latent characteristics generated
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Fig. 15. ROC curve for evaluating different kinds of models.

Fig. 16. Ablation experiment.

Fig. 17. Box plot for ablation experiment.

by different failure scenarios. According to the results from
Figs. 13(a)–(f) and 14(a)–(f), the failures of splitting and frac-
ture are particularly difficult to identify for all models. This is
probably because modeling this kind of information effectively
is difficult since the data are inherently complicated. Overall,
the feature manifold visualization reveals valuable insight into
the models’ performance and highlights the effectiveness of
our proposed model in accurately capturing and interpreting
the latent features of the data.

A typical metric for assessing the effectiveness of classifi-
cation models is the F1 score. It incorporates precision and
recall, two crucial metrics for evaluating a model’s perfor-
mance. Recall is the percentage of genuine positives among
all real positives, whereas precision is the percentage of real
positives among all predicted positives. A model that has a
high F1 score has successfully balanced precision and recall.
In the context of the comparison in Table III, an F1 score of
0.939 for the proposed model indicates that it has achieved a
high level of performance in terms of accurately recognizing
positive cases and avoiding false positives. The proposed

model has shown superior performance in terms of balancing
precision and recall while compared to existing models like
ShuffleNet, RepVGG, ResNet50, ResNet101, and DenseNet.
This reveals that the proposed model may be more efficient at
differentiating these various damages from CFCS.

The receiver operating characteristic (ROC) curve is utilized
to evaluate the classifications by examining its shape and the
area under curve (AUC), and the results are illustrated in
Fig. 15. It is easy to see that the proposed model achieves
higher AUC by examining the ROC curve’s shape which is
shown in Fig. 15. It reveals that the proposed model is more
effective at categorizing the true and false category of the
features captured from CFCSs.

G. Ablation Experiment

This section describes an experiment conducted to evaluate
the proposed model’s effectiveness through ablation analysis.
The experiment involves gradually weighing the percentage of
synthesized samples, and the results are depicted in Fig. 16.
The results reveal that the percentage of synthesized samples
plays a crucial role in improving the model’s classification
performance. Specifically, in Fig. 17, the mixed sample with
100% synthetic samples achieves a higher average accuracy
of 93.1%. Conversely, in other scenarios, the accuracy is
lower, with the synthesized samples containing 20% synthetic
samples achieving the lowest accuracy of 89.8%.

V. CONCLUSION

In this study, a mixed samples-driven methodology based on
DDPM are proposed for identifying damage in CFCSs. The
proposed methodology allows for the improvement of small
sample size robustness by integrating the DDPM module. The
mixed samples-driven architecture is constructed by integrat-
ing and processing the synthetic sample together with a few
real samples collected during real-world testing. According to
experimental evidence, the proposed methodology for detect-
ing and diagnosing damage in CFCS achieved an average
accuracy of 93.1%, which is greater than 3.3% compared to
current methods. In future work, the utilization of multiple
sensors for failure forecasting and health condition monitoring
may be explored.
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