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Long-term reliable health condition monitoring (HCM) of a wind turbine is an essential method to avoid
catastrophic failure results. Existing unsupervised learning methods, such as auto-encoder (AE) and de-
noising auto-encoder (DAE) models, are utilized to the condition monitoring of wind turbines. The critical
bottleneck of these models for monitoring is to determine a threshold for identifying different health con-
ditions. Unfortunately, the threshold is usually set up with different kinds of calculation methods or even
based on experience. Therefore, the uncertainty of the threshold will inevitably influence the accuracy of
the monitoring process and may lead to misdiagnoses. To overcome this limitation, this research intro-
duces a threshold self-setting HCM scheme, based on deep convolutional generative adversarial networks
(DCGAN) and employed for defining a self-setting threshold to monitor wind turbine generator bearings.
A threshold for HCM can be automatically created through the output of the G network in the DCGAN
model, and the challenging problem of setting up a threshold can be solved. Besides, the use of Nash
Equilibrium for training enables this scheme to become self-defined evaluators with a high level of con-
sistency, without any human intervention and can be treated as a self-defined threshold, and it is a model
self-tuning process. Furthermore, a sample discrepancy analysis based on the output of the G network is
utilized so that a quantitative indicator of the fault severity in wind turbine generator bearings are pro-
vided. By tracking a real wind turbine dataset from the LU NAN wind farm in China, the effectiveness of
the proposed scheme is verified.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Wind turbines (WTs) are large-scale and complex electrome-
chanical systems. They are widely utilized in renewable energy
applications. A wind turbine comprises hundreds of key parts, such
as tower, rotor hub, transmission chain system (main shaft, gear
drive system and bearings), spinner and blades assembly, genera-
tor frame, cooling cabinets, power electronics, etc.[1,2]. Particu-
larly, rolling bearings are a critical part of the transmission chain
in a wind turbine. Yet, they are often exposed to extreme environ-
mental variables, such as frost and typhoon weather states. Such
states make rolling bearings prone to suffer from frequent damages
and various kinds of failures [3]. As a result, unexpected malfunc-
tions would unavoidably make extra maintenance costs. To avoid
catastrophic accidents and reduce operation and maintenance
(O&M) costs, HCM can prevent failures by providing early alerts
as well as enable better maintenance plans.

Recent researches [4–10] on HCM for rolling bearings can be
categorized as two kinds of methodologies, namely model-based
and data-driven based approaches. The measured vibration signals
are regularly characterized by non-linear and non-stationary char-
acteristics due to the operational conditions with varying loads and
fluctuating speeds. As a result, it makes model-based methods and
signal processing methods more challenging. Furthermore, these
traditional model-based approaches are heavily dependent on a
rich understanding of the behavioral characteristics of rolling bear-
ings and human experience from real practice [11–13]. Further-
more, the model-based approaches are usually restricted with a
specific part in rotating machinery. Thus it usually cannot be gen-
eralized and used for monitoring other parts. That may signifi-
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cantly limit the generalization capability of the model-based
approach in various applications.

Conversely, for data-driven approaches like machine learning
techniques, they are not only having the capability of generaliza-
tion but also have been proven to be effective in various applica-
tions of fault diagnosis and HCM [2,14–16]. However, the
traditional machine learning methods, especially the supervised
learning algorithms, also have its hindrances [17,18]. For instance,
support vector machines (SVMs) and also support vector networks
[19] are supervised learning models, which can be employed for
both classification or regression issues. The SVMs is a binary clas-
sifier. Consequently, it does not allow good results for multi-class
classifications or pair-wise classifications. Besides, SVMs cannot
deal with massive amounts of industrial data that is because the
computation is expensive and running slow [20]. A degradation-
Hidden-Markov model [21] is proposed for evaluating the health
condition status of wind turbine bearings under different stages.
However, it can only accommodate small samples rather than a
massive amount of industrial data.

In contrast to the traditional machine learning, the strengths of
deep learning algorithms are listed as follows. (a) Learning features
and recognizing fault automatically. (b) Learning a more complex
structure from data due to the deep architecture. (c) Handcraft fea-
ture engineering is not necessary [22]. Numerous researches [23–
26] in terms of deep learning algorithms are offered in the field
of HCM. However, deep learning methods, especially the super-
vised deep learning algorithms, such as a convolutional neural net-
work (CNN) [27] requires a sufficient amount of historical labeled
failure data for training. Unfortunately, for industrial applications
[28,29], it is often challenging to achieve a massive amount of
labeled samples. That makes the supervised learning methods, to
some extent, unrealistic. According to the above discussions, some
hurdles of HCM for rolling bearings in WTs in terms of data-driven
approach can be summarized as follows,

1. Large and massive amounts of data are featured with scarce
labels.

2. Vibration signals are characterized by nonlinearity and non-
stationarity caused by varying loads and fluctuating speeds.

3. The strategy of HCM requires to be reliable and on-line with
less human intervention.

An unsupervised deep learning approach, namely an autoen-
coder (AE) model, is therefore introduced for wind turbine moni-
toring in which only the healthy data are needed for training
[2,30,31]. An AE model can learn an underlying representation of
the available health data in an unsupervised manner, and it may
well describe the nonlinear features of the raw input data. Its hid-
den layer information can be further served as the raw input data
to the decode network, which is trained to reconstruct the raw
input. Consequently, the model is trained to minimize the recon-
struction error (RE). Afterward, through RE, it may help to detect
previously unseen patterns in the new data sequences, in other
words, the RE may be treated as a threshold for condition monitor-
ing purposes. Recently, some attempts [2,31] were made to utilize
AE models for anomaly detection and blade breakage in WTs.
Inspired by these works, Jiang et al. introduced a de-noising
autoencoder (DAE) model to build a robust multivariate recon-
struction model based on the original time-series data from multi-
ple sensors. By analyzing the Supervisory Control and Data
Acquisition (SCADA) data, a receiver operating characteristic
(ROC) analysis [32] is utilized to evaluate RE and hence for moni-
toring. A proper threshold for trending RE is, however, not pro-
vided. In order to determine the threshold, an exponentially
weighted moving average (EWMA) control chart [31,33] is applied
to analyze RE distribution. To detect the anomalous condition of
wind turbines, an assumption of the RE distribution, which satis-
fies an exponential distribution with a threshold based on extreme
value theory, was proposed for monitoring purposes [34]. Mean-
while, the recent investigations shed light on the bearing fault
diagnosis based on different domains. In [35], to accommodate
the issue of lacking substantial labeled samples, a domain adaptive
deep belief network is proposed, and it has been verified in the
case of rolling bearing fault diagnosis. To remedy between the
source domain and target domain, in [36], a novel knowledge
transfer network with fluctuating operational condition adaption
was proposed, and this model enables the capacity of fault diagno-
sis under varying operational conditions for rolling bearings. In
[37], an intelligent fault diagnosis method based on generative
adversarial nets combined with the convolutional neural network
was proposed. This method is implemented via Wavelet transform,
and then the time–frequency images are used to train WT-CNN-
GAN model for producing new samples for classification. However,
the core problem of the approaches, as mentioned above, is that
the threshold is dependent on the RE distribution. Once the distri-
bution of RE violates this assumption, the threshold setting is prob-
lematic, and thus, fault modes or malfunctions may not be
identified. Besides, during the above threshold setting process,
human intervention is unavoidable, and different threshold setting
methods may give different results of threshold. Subjective uncer-
tainties are inevitably introduced to the health monitoring process.
Furthermore, owing to the noisy RE distribution, in real condition
monitoring of wind turbines, a practical threshold for HCM based
on AE or DAE model is an issue to be resolved.

To overcome the above drawbacks, a self-setting threshold
scheme based on deep convolutional generative adversarial net-
works (DCGAN) is proposed in this paper. In this scheme, an unsu-
pervised DCGAN is trained with measured healthy data. Once the
DCGAN model is well trained, i.e., the model reaches a Nash equi-
librium [38], a threshold for HCM can be automatically created
through the output of the DCGAN model. Afterward, to quantita-
tively evaluate and track the fault severity of a wind turbine bear-
ing with different measurements, a sample discrepancy method is
developed for evaluating the health conditions. In this paper, a
wind turbine dataset measured at LU NAN wind farm in China over
about 2 years is utilized to validate the effectiveness of the pro-
posed scheme by comparing with AE, DAE and vanilla generative
adversarial networks (VGAN). The proposed scheme shows distinct
advantages in HCM for wind turbine bearings.

A schematic depiction of the proposed scheme is depicted in
Fig. 1. Furthermore, the performance of the scheme is compared
with the AE and DAE based models. Primarily, the self-setting
threshold is employed to substitute the Receiver operating charac-
teristic (ROC) analysis method, EWMA control chart and extreme
value theory based on exponential distribution. The rest of the
paper is outlined as follows. Section 2 specifies a vanilla generative
adversarial network (VGAN) model, which is the basis of the pro-
posed scheme. Section 3 illustrates the proposed threshold self-
setting HCM scheme based on a DCGAN model. Subsequently, a
case study is discussed in detail in Section 4. Section 5 concludes
the proposed scheme and gives a summary of the results. Finally,
in A, the basis of auto-encoder and de-noising auto-encoder mod-
els are illustrated.
2. Generative adversarial networks

2.1. Vanilla generative adversarial networks (VGAN) model

In this section, a state-of-the-art algorithm for generative
adversarial networks is introduced, commonly referred to as VGAN
[39]. VGAN is inspired by binomial zero-sum game theory [40]. It



Fig. 1. Schematic description of health condition monitoring methods based on traditional methods and proposed method.
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consists of two competing subnetworks, namely a G (generator)
network, Gh and a D (discriminator) network, D/. Each opposing
subnetwork is parameterized by a different set of weights h and
biases /. By changing h, the optimizer G minimizes the loss func-
tion LGhðzÞðhÞ in Eq. (1). Likewise, by changing /, the optimizer D
Fig. 2. Computational procedu
minimizes its own loss function LD/ðxÞð/Þ in Eq. (2). The structure
of VGAN is shown in Fig. 2.

LGhðzÞðhÞ ¼ � logð DðGðzÞÞ
1� DðGðzÞÞÞ ð1Þ
re and structure of VGAN.



4 P. Chen et al. /Measurement 167 (2021) 108234
LD/ðxÞð/Þ ¼ �1
2
logðDðxÞÞ � 1

2
logð1� DðGðzÞÞÞ ð2Þ

In the training process, the goal of the discriminator is to deter-
mine whether the input samples are the real samples x or gener-
ated fake samples x�. The real samples follow the probability
distribution of Pdata. G tries to capture the underlying feature distri-
bution of the real samples so that the generated fake samples could
fool the discriminator, i.e., the produced fake samples would be
considered as real samples by the discriminator. The training of
the VGAN model is achieved by setting G against D in a min–
max two-player game fashion, and it can be explained mathemat-
ically as an optimization process for function VðD/ðxÞ;GhðzÞÞ.

Random noise z is input to G and it will generate fake samples x�

which follows a parameterized distribution Q h, i.e., x� � Q h. With
the training progressing, the discrimination ability of D improved
so that it could separate the samples from G or D subnetwork.

G or D updates its parameters by a fine-tuning process guided
by the gradients derived from the cost function defined in Eq.
(3). Through the mutual adversarial learning mechanism between
the two subnetworks, G and D continuously confront each other
and optimize themselves. Finally, when training is well completed,
Nash-equilibrium is automatically reached. According to this game
principle, the Nash-equilibrium reached a point that leaves G/D in
no better or no worse situation, no matter what G/D opponent
decides to do. At this stage, the continued adversarial training of
both competing subnetworks can lead to the generation of high-
quality samples, i.e., Q h � Pdata. D now is not sure of whether the
samples are real or produced, then it means that the D/ðxÞis close
to 0:5.

min
GhðzÞ

max
D/ðxÞ

V ðD/ðxÞ;GhðzÞÞ ¼ Ex�pdataðxÞ½log DðxÞ�þ ð3Þ

Ez�pzðzÞ½log ð1� DðGðzÞÞÞ�
3. A threshold self-setting HCM scheme based on DCGAN model

To begin with, in order to accommodate the non-stationary con-
ditions and capture the underlying nonlinear and non-stationary
features, a convolutional neural network, commonly referred to
as ConvNet or CNN [41], are integrated into the original VGAN
model. This model is named deep convolutional generative adver-
sarial networks (DCGAN) [42].

Secondly, a threshold, i.e., D/ðxÞ � 0:5 is created by the well
trained DCGAN model, and it is used as a criterion for setting up
a threshold and monitoring input samples. Once a DCGAN model
is trained well (or reaching Nash-equilibrium) based on healthy
samples, a fault sample input will make D/ðxÞ away from 0:5. So
the trained DCGAN model can be treated as a self-defined evalua-
tor for identifying the measured anomalous samples. More impor-
tant, it should be noticed that, for calculating D/ðxÞ, there is no
human intervention or manual setting up of a threshold for health
monitoring. Instead, the DCGAN model will automatically train
itself as an evaluator for monitoring purposes. The further away
from D/ðxÞ � 0:5, the more severe the deviation of the input sam-
ples. The D/ðxÞ can be used as the DCGAN metric in Section 4.2.3.
Further, it is also noticed that D/ðxÞ is not a single value, but a data
sample with the same size as the input sample. Therefore, it is rea-
sonable to transform the data sample D/ðxÞ to be a fusion indicator.
Thus, a sample discrepancy based method is adapted here to calcu-
late a monitoring indicator function (MIF) based upon the output
of DCGAN, D/ðxÞ, so that MIF could easily be used for health condi-
tion monitoring.

The corresponding application flow chart of the proposed
scheme is shown in Fig. 3. The implementation procedures can
be summarized as follows:
1. Raw data, such as a wind turbine generator bearings dataset, is
collected by accelerometers. Afterward, the raw vibration signal
is transformed into frequency domain signal through Fourier
analysis. Finally, the frequency domain data is fed into the
DCGAN model.

2. Via the adversarial learning mechanism, G and D subnetworks
of DCGANmodel are iteratively trained by alternating optimiza-
tion until Nash equilibrium is reached.

3. The well trained DCGAN model is used as a self-defined evalu-
ator, and the output D/ðxÞ can be creatively used for anomalous
detection or thresholding.

4. A MIF indicator based upon sample discrepancy analysis is fur-
ther calculated with D/ðxÞ. Then, quantitative analysis or a
fusion measure is established for health condition monitoring.

The detailed configuration of the DCGAN model used in this
paper is explained in the following. G and D (shown in Fig. 2) are
replaced by deep convolutional neural networks (DCNN), respec-
tively. A visual representation of the G architectural topology is
presented in Fig. 4 and the architectural topology of the transposed
convolutional neural network is shown in Fig. 5. The G network is
comprised of 4 transposed convolutional layers, which is summa-
rized in Table 1. For this network, random noise is passed through
a fully connected layer, with an output size selected and reshaped
to ensure the produced samples fit the dimension of the real sam-
ples, which are then passed through four deconvolution layers. In
[42], it is suggested that a Relu activation function is used in the
generator for all layers except for the final layer (Sigmoid), which
is determined by the scope of input. Therefore, a Relu activation
function is applied to all layers, whereas the final layer passes
through a sigmoid activation function. Thus, training data is nor-
malized between [0, 1], before being presented to the discrimina-
tor. D consists of 4 convolutional layers with an increasing
number of filters on each layer. The stride is kept low on the first
and second layers and then increased on the rest of the layers with
the value reaching 4 (see in Table 2). The fully connected neural
network is utilized to transfer the output of discriminator with
an output size of 4096 (second last layer) and 1 (last layer) respec-
tively. The Leaky Relu activation function is utilized in all layers
except the output [42]. This can potentially make the adversarial
training of the architecture more stable and avoiding sparse gradi-
ents [42].
4. Case study for analyzing the bearing in wind turbine

The proposed scheme for wind turbine bearing health condition
monitoring is validated through measured vibration data from a
real wind farm in LU NAN, China. The doubly-fed induction gener-
ator (DFIG) wind turbine system [43] is being monitored, and its
configuration is shown in Fig. 7. This kind of wind turbine is an off-
shore 1.5-MW three-bladed horizontal axis system. Twelve
accelerometers are installed at different locations of this wind tur-
bine transmission line (see Figure 6). The measured signal for the
studies in this paper is acquired from channel 05, and it is high-
lighted with the dotted square shown on the generator in Fig. 6.
Its real mounting situation is also shown in Fig. 8. It can be seen
that channel 05 is located at the input shaft of the generator with
the shortest distance to the monitored bearing among all 12
accelerometers.

Many input rotational speeds are possible for a wind turbine
due to the various kinds of operational conditions, such as variable
stochastic wind speeds (see in Fig. 9), non-stationary loads and
dynamic transmission torques [2]. It is always a question before
implementing a health condition monitoring scheme of the real-
world wind turbines. In order to have consistent monitoring with



Fig. 3. Flow chart of proposed new HCM scheme based on DCGAN.

Fig. 4. A visual representation of G generator architecture.
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Fig. 5. A visual representation of D discriminator architecture.

Table 1
Generator architecture of DCGAN.

Layer DCGAN Generator

Input z = [128�1]
1st Deconv1�256kKernelsize¼½22�;Stride¼½2�;padding¼½10�ðReluÞ
2nd Deconv256�128kKernelsize¼½22�;Stride¼½2�;padding¼½10�ðReluÞ
3rd Deconv128�32jjKernelsize¼½22�;Stride¼½2�;padding¼½10�ðReluÞ
4th Deconv32�1kKernelsize¼½22�;Stride¼½2�;padding¼½10�ðReluÞ
5th Denseð2048;1024ÞðSigmoidÞ

Output [1�1024]

Table 2
Discriminator architecture of DCGAN.

Layer DCGAN Discriminator

Input x = [1024�1]
1st Conv1�32kKernelsize¼½22�;Stride¼½2�;padding¼½10�ðLeakyReluð0:2ÞÞ
2nd Conv32�64kKernelsize¼½22�;Stride¼½2�;padding¼½10�ðLeakyReluð0:2ÞÞ
3rd Conv64�128kKernelsize¼½24�;Stride¼½4�;padding¼½10�ðLeakyReluð0:2ÞÞ
4h Conv128�256kKernelsize¼½24�;Stride¼½4�;padding¼½10�ðLeakyReluð0:2ÞÞ
5th Denseð256�16;1ÞðSigmoidÞ

Output [1]
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acceptable accuracy, in this scheme, it is sensible to consider the
measured vibrations during the full working conditions. Vibrations
at typical rotational speeds 1080 r/min were selected at a high pri-
ority for analysis.

The real monitoring conditions are as follows,

1. Due to the real monitoring schedule plan, a semi-monthly inter-
val measurement is selected. The sampling frequency is
20,000 Hz, and 15 sets of data at random periods within one
day are used for each analysis.

2. Due to the ever-changing weather conditions, the rotating
speed could not always reach the selected speeds 1080 r/min.
To ensure consistent health condition monitoring, the actual
collection dates do deviate from the planned intervals.

4.1. Data pre-processing

The raw data x with n ¼ 2;156;000 points, fxigni¼1, is collected
during each measurement. The training data was measured on
May 31, 2015. To construct multiple samples for training, a
sliding-window technique [2], is applied to produce time-series
data. Specifically, the size of the sliding window and the stride
are set at 1024 points and 512 points, respectively. Consequently,
1346 samples with 1024 points in each sample are produced. Then,
the Fast Fourier transform (FFT) [44] is utilized to transform the
time domain samples into the frequency domain. Finally, a normal-
ized scheme shown in Eq. (4) is used to normalize the frequency
domain data. Hence, the input data is first transformed into the fre-
quency domain and then normalized to [0, 1]. The testing samples
(from Oct. 31, 2015, to Apr. 19, 2016) are processed in the same
manner.

xtrain ¼ ðx�minðxÞÞ
maxðxÞ �minðxÞ ð4Þ
4.2. Case study

4.2.1. AE and DAE models
Once the training and testing dataset from the wind turbine is

ready for analysis, the unsupervised learning models such as
auto-encoder (AE) and de-noising auto-encoder (DAE) for health
condition monitoring are also adopted for comparison. The models
are implemented using machine learning PyTorch. The training
models are implemented end-to-end on a GPU (Nvidia GTX
1080). For testing and validating the model, the model was run
on a machine utilizing a 12-core CPU (Intel i7 8700 K) with 32G
of DDR4 memory. The use of a GPU for the training of the models
decreased the time significantly.

The first 15% (May 31, 2015) of the dataset is treated as a refer-
ence condition (healthy condition) and displayed in section I of
Fig. 10. Reconstruction error (RE) which is explained in Appendix
A is used for setting up the monitoring threshold. Through calculat-
ing RE (see Eq. (A.3)) for healthy data, a threshold (the dotted line)
can be obtained as is shown in Figs. 10 and 11. The corresponding
RE results through AE and DAE models can be depicted in Figs. 10
and 11.

In Fig. 10, the RE results are described as follows,

1. RE values of section I almost stay constant at 1:85l except for
two peak values, which may be caused by sudden disturbances,



Fig. 6. The layout of wind turbine.

Fig. 7. Double fed induction generator wind turbine system.
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and section I can be treated as a fairly good threshold or refer-
ence for monitoring.

2. Further, RE values from sections II and III both are above the
threshold (dotted line). Data from section II was also measured
during healthy conditions, while there is a distinct difference of
RE values for sections I, II and III. That makes the setting up of
the threshold problematic.

3. It shows that RE in section II fluctuates from 44:53l to 122:20l.
Whereas, in section III, the RE value fluctuates over a wide
range from 96:82l to 493:21l.

From the observations of Fig. 10, it may be observed that,

1. Due to the different RE results, the healthy state in section II and
section III are both different from the reference condition
(section I). That makes the set up a proper threshold for moni-
toring difficult.

2. The RE fluctuating range of section III is wider than section II. It
indicates that the status of section III is deteriorating compared
to section II.

Similarly, an investigation for HCM is implemented based on
the DAE model (see Fig. 11). Due to the environmental noise
being overwhelmed in a real wind farm, there is little impact
on the DAE model by adding noise. Hence, the HCM result of
the DAE model is almost the same as the AE model (see
Fig. 11 and Fig. 10).

To further investigate the use of RE for health condition moni-
toring, the exponentially weighted moving average (EWMA) con-
trol chart, which is mentioned in [31,45] is implemented for



Fig. 8. Installed location of vibration accelerometers. (The accelerometers are
mounted on outside of the generator in wind turbine horizontally and vertically,
respectively.).
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Fig. 9. Variable stochastic wind speeds.
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comparison. In Fig. 12, the training data (see section I) is used to
estimate a threshold based on the EWMA chart. The upper control
limits (UCL) and lower control limits (LCL) [46] are calculated to be
30:56l and 2:32l, respectively. Compared to the original RE distri-
bution (see Fig. 10), the EWMA control chart still treats section II as
a faulty condition, which is not the case in the real situation.
Fig. 10. Reconstruction error of the wind turbine dataset trended over almost 1 year. Se
the AE model. (For interpretation of the references to colour in this figure legend, the re
4.2.2. VGAN model
To illustrate the VGAN model and DCGAN model for health con-

dition monitoring, a comparison with the generative data ability of
the two models is made first. Based on the same datasets, the first
15% of the dataset (see section I in Fig. 10) as the reference condi-
tion is treated as healthy and used for training the VGAN again.
Fig. 14 (a) and (b) visualize the loss functions of G (generator) as
well as D (discriminator). It can be seen that after about 1200 iter-
ations, the DCGAN model is stabilized, whereas with the same
number of training epochs, the loss functions of VGAN shown in
Fig. 13 (a) and (b), do not show a stable trend, i.e., the output of
the loss functions are not stabilized. From Fig. 14 (a) and (b), it is
clearly shown that the DCGAN outperforms the VGAN in terms of
stability for the same number of iterations.

Furthermore, from Fig. 15 (a), especially the zoomed-in region,
it is clear that the generated data sequence from the VGAN is not
matching with the original data correctly. In DCGAN, however,
the generated samples presented in Fig. 15 (b) are matching well
with the real data. Thus, the DCGAN model can be used as a
promising tool for monitoring the health conditions of wind tur-
bine bearings.
4.2.3. DCGAN model
The proposed scheme based on the DCGAN model is now

applied to monitor the health conditions of the wind turbine bear-
ing. The datasets are split into training and similarly testing sets, as
have done in Section 4.2.1. The training dataset containing solely
healthy data sequences (May 31, 2015) are illustrated in section I
of Fig. 16. In the training process of DCGAN, the hyper-
parameters (see Eq. (3)) for training are evaluated empirically. Both
subnetworks D and G are trained utilizing the RMSprop optimizer.
For training of D/ðxÞ [47], it provides meaningful learning curves
that are useful for debugging and hyper-parameter exploration,
and the optimizer is utilized with a learning rate of 2� 10�6. The
same learning rate is also applied to train G. Dropout in both sub-
networks is used with a probability of 0.2. Finally, adversarial
training is done for up to 5000 epochs.

To illustrate the DCGAN metric (D/ðxÞ in Nash equilibrium) in
the DCGAN model, the probability density function (PDF) of the
ction I with light yellow highlighted section represents the data used for training of
ader is referred to the web version of this article.)



Fig. 11. Reconstruction error of the wind turbine dataset trended over almost 1 year. Section I with light yellow highlighted section represents the data used for training of
the DAE model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. EWMA control chart of wind turbine dataset trended over almost 1 year.
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DCGAN metric D/ðxÞ values of healthy and fault samples are inves-
tigated. As has been discussed in Section 3, the automatic setting of
a threshold (Nash equilibrium) can be obtained by training on
healthy samples (see section I in Fig. 16), and the resultant DCGAN
metric can be treated as reference or threshold.

By normalizing the DCGAN metric, the sample discrepancies
between health and faulty states are shown in Fig. 16. In Fig. 18
(a) (a healthy sample form May 31, 2015) and Fig. 19 (a) (a fault
sample form Dec. 21, 2015), the probability density function
(PDF) of DCGAN metric are displayed. The failure sample is
selected in one stage of section III in Fig. 16. It can be seen that
the estimated cumulative probability (see Fig. 18 (b)) and probabil-
ity (see Fig. 19 (b)) are matched well with the original samples.
From the estimated PDFs, the mean values can be calculated. They
are 0.963 and 0.801, respectively. In Fig. 20, it can be observed that
there is no overlap between the two samples, and the two states
can easily be separated. Consequently, the DCGAN metric shows
that its PDF can indeed separate the healthy and unhealthy sam-
ples and therefore monitor the health conditions of wind turbine
bearing.

Examining Fig. 16 again, the distribution of the DCGAN metric
can be described as follows,

1. The DCGANmetric value in section I stays constant. Specifically,
its minimum and maximum values from 0:962 to 0:964.

2. The DCGAN metric value ranges from 0:937 to 0:971 in section
II. Although there is still a difference from section I but it is
small and can almost be treated as the same as section I.

3. Compared to sections I and II, DCGAN metric values in section
III (from 0:77 to 0:92) fluctuate over a wider range.

4. A large drop occurred on Mar. 14, 2016 with a minimum value
0:08 in section IV.



Fig. 13. VGAN model: (a) Loss function of discriminator (b) Loss function of generator.

Fig. 15. (a) Comparison between generator network and real samples by VGAN (b) Comparison between generator network and real samples by DCGAN.

Fig. 14. DCGAN model: (a) Loss function of discriminator (b) Loss function of generator.
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5. In section V, the DCGAN metric value ranges from 0:90 to 0:96.
It returns back to almost 1:0 again after Apr. 2016.

From the observations in Fig. 16, it may be inferred that,

1. The DCGAN metric features almost are the same values in sec-
tions I and II. It indicates that the monitored bearing was essen-
tially in similar health conditions, as was the case in reality.
Compared with AE and DAE, DCGAN shows an improved ability
to adapt to new data samples. That may be attributed to the fact
that DCGAN is trained to generate data samples while AE and
DAE are trained to represent given samples.
2. From the fluctuating DCGAN metric distribution in section III, it
follows that the monitored bearing health condition is deterio-
rating. Especially, in section IV, the sudden drop indicates that a
severe fault occurred in the wind turbine bearing.

3. A new bearing replacement was implemented (see in Fig. 17) by
the maintaining engineers on Mar. 14, 2016. The DCGAN metric
in section V returned to almost 1:0. It also proves that the moni-
toredbearing returned to thehealthy state after the replacement.

Further, comparing Fig. 10 and Fig. 11, the RE values of AE and
DAE do not show an evident sudden change of values on Mar. 14,
2016. DCGAN metric in Fig. 16 indeed offers advantages in indicat-



Fig. 16. DCGAN metric distribution of wind turbine bearing dataset (from the wind turbine in LU NAN wind farm) trended over almost 1 year. Section I with light yellow
highlighted section represents the data used for training of the DCGAN model. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 17. Failures in inner race of rolling bearings (The regions of the dotted line are the defect with worn inner race).

P. Chen et al. /Measurement 167 (2021) 108234 11
ing the change of states. Meanwhile, the observations of Fig. 16
were validated by the replacement of bearing by the maintenance
team. To highlight the advantages of the proposed threshold self-
setting health condition monitoring scheme, a table (see in Table 3)
summarizs the different methods for health monitoring of wind
turbine bearing. The real bearing condition is shown in Fig. 17.
4.2.4. Tracking fault severity of wind turbine bearing
In the section, as mentioned above, 4.2.3, the failure measure-

ments of the DCGAN metric renders the fluctuating result
shown in Fig. 16. It can be seen as a qualitative evaluation or
visual description. It is noted that the original output of the G net-
work is a data set with several values. It is not convenient for con-
dition monitoring purposes, thus for convenience sake, a single
indicator monitoring indicator function (MIF) is introduced for
monitoring.

The probability distribution of the DCGAN metric (PDM), is
denoted as
Spdm ¼
XM
j¼1

xipdm; i ¼ 1;2;3; . . . ;N; j ¼ 1;2;3; . . . ;M ð5Þ

where xipdm is the PDM sample with n points in each sample, and
Spdm is the datasets with M samples.

For a set of sample points xipdm; i ¼ 1;2;3; . . . ;N, the estimated
PDF pðxpdmÞ using the kernel density estimation [48] at point xpdm
is defined as

pðxpdmÞ ¼ 1
Nr

XN
i¼1

Kðxpdm�xi
pdm

r Þ ð6Þ

where Kð�Þ is the kernel function and r is the bandwidth. The opti-
mal value for r is determined using the method discussed in [48]. A
Gaussian kernel is utilized in this paper as follows,

KðgÞ ¼ e
g2

2ffiffiffiffiffiffiffi
2p

p ð7Þ



Table 3
Comparison of health condition monitoring performance by the different methods

Methods AE DAE VGAN DCGAN

Data generation ability � � p p
HCM threshold REa REb VGAN metric DCGAN metricc

Training/test samples 942/404 942/404 942/404 942/404
Validity for WT bearings � � � p

a Reconstruction error (RE) evaluations through receiver operating characteristic (ROC).
b Reconstruction error (RE) evaluations through EWMA control chart or Extreme value theory based on exponential distribution.
c DCGAN metric is the output of subnetwork Discriminator, i.e.,D/ðxÞ in Nash equilibrium.

Fig. 18. Healthy sample based on the wind turbine: (a) Probability density function of DCGAN metric (b) Cumulative probability.

Fig. 19. Fault sample based on the wind turbine: (a) Probability density function of DCGAN metric (b) Probability.

12 P. Chen et al. /Measurement 167 (2021) 108234
The PDM sample based on the healthy condition is shown in
Fig. 18 (a). Its cumulative distribution function is given as follows,
Z þ1

�1
pðxpdmÞdxpdm ¼ 1 ð8Þ
From Fig. 18 (b), it is clear that the estimated cumulative distribu-
tion function fits the original distribution well. Therefore, PDM fol-
lows a normal distribution xpdm � Nðlj;rjÞ with mean value lj and
standard deviation rj. To avoid the influences of some strange peak
values in a small failure dataset, the three-sigma rule of thumb is uti-
lized to exclude outliers. Then, the valid value points between
lj � 3 � rj and lj þ 3 � rj are considered. Finally, the monitoring
indicator function (MIF) can be calculated and utilized to track
the fault severity.

MIFj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1ðxipdm � ljÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1ðxipdm � l1Þ

q

i ¼ 1;2;3; . . . ;N; j ¼ 1;2;3; . . . ;M
lj � 3 � rj < xipdm 6 lj þ 3 � rj

ð9Þ

where l1 is the mean value of PDM based on the healthy condition.
Fig. 21 shows the MIF results v.s. date, it is observed that the

MIF can track the fault severity. A sudden increase of MIF at Mar.
14, 2016 is found, and its corresponding MIF is reached at almost
3:5� 10�2. This represents the worst condition of the wind turbine
bearing. Afterward, bearing replacement is performed, and the MIF



Fig. 20. Sample probability distribution from the output (DCGAN metric) of the
DCGAN model.

Fig. 21. Tracking the fault severity based on the wind turbine.
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returned to 0 on Apr. 19, 2016. The result of the DCGAN metric in
Fig. 16 is quantified and simplified by this proposed MIF.
5. Conclusion

For the AE based methods, the rule of thumb for training is to
minimize the reconstruction error (RE) within a set of given sam-
ples. Instead of representing given samples, GAN based methods,
on the other hand, generate new samples that allow these methods
to accommodate more data sample variances with a stronger gen-
eralization ability. Furthermore, the use of Nash Equilibrium for
training enables GAN based methods to become self-defined eval-
uators with a high level of consistency, with less human interven-
tion. Hence, an attempt to make use of the self-defining ability of
the DCGAN model is investigated. In the proposed method, the
threshold value can be automatically created by the output of
the G network in the DCGAN model. In other words, the determi-
nation of the threshold value for monitoring is shifted from subjec-
tive threshold calculation to the data itself. This advantage can be
fully exploited for setting appropriate thresholds for health condi-
tion monitoring (HCM) purposes.

To this end, this paper develops a threshold self-setting HCM
scheme based on a DCGAN model to monitor a wind turbine bear-
ing. The issue of category imbalance can be solved mainly by the
DCGAN’s powerful capability in learning an underlying representa-
tion from the purely healthy data sequences. Furthermore, a mon-
itoring indicator function is developed to measure the fault
severity of the wind turbine bearing quantitatively. The industrial
wind turbine data from real wind farm has successfully proved the
effectiveness of the proposed scheme. For the future work, the
massive amounts of data from multiple sensors (e.g., SCADA anal-
ysis) could be considered for wind turbine generator bearings in
health condition monitoring and fault diagnostics.
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Appendix A. Autoencoder (AE) model

The AE and DAE are used to compare with the proposed DCGAN
scheme. Therefore, the two methods are introduced in the
following.

An AE model [30] is usually treated as an unsupervised manner
to learn the underlying representations from fault-free data. Gen-
erally, as depicted in Fig. A.22, an AE model is comprised of two
parts, i.e., encoder network and decoder network. The encoder net-
work transforms the raw input data from a high-dimensional space
into an underlying representation with a low-dimensional space.
Then, this latent representation further serves as input to the deco-
der network, which is trained to reconstruct the original input

data. We are given the raw input data xi from a dataset fxigMi¼1,
and each xi has n dimensions. Typically, the encoder network

transforms xi to a hidden layer hi, which can be mapped by a non-
linear function,

hi ¼ f ðW � xi þ bÞ ðA:1Þ
where f ð:Þ is a nonlinear activation function, such as the sigmoid
function.W 2 Rd�mis the weight matrix and b 2 Rd is the bias vector



Fig. A.22. Schematic diagram of AE model.
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which will be optimized in the encoding process with d nodes in the
hidden layer.

The decoder network attempts to transform the corresponding

hidden layer to a reconstructed vector x̂i. This reconstructed vector

x̂i is determined by,

x̂i ¼ gðW0 � hi þ cÞ ðA:2Þ

where the parameters W0 2 Rd�mand c 2 Rd are the weight matrix
and the bias vector respectively. gð:Þ is also a nonlinear function
(typically sigmoid function). In this model, the weight matrix W0

is usually selected as W0 ¼ WT , which is refereed to as the tied
weights for better learning performance [49].

To reconstruct the original data as closely as possible, parame-
ter sets from the encoder and the decoder are optimized. It can be

realized by minimizing the reconstruction error (RE) Lðxi; x̂iÞ,
where Lðxi; x̂iÞ is a loss function used for evaluating the discrepancy

between xi and x̂i [50]. This parameter optimization process can be
implemented with stochastic gradient decent (SGD) or second-
order gradient algorithms, such as limited-memory Broyden-Felet
cher-Goldfarb-Shanno(L-BFGS) [51]. To achieve a stable and fast
training process, the algorithm of L-BFGS is usually utilized. The
minimizing reconstruction error is shown below

RE ¼ minimize
H

1
M

XM
i¼1

Lðxi; x̂iÞ

¼ minimize
H

1
M

XM
i¼1

Lðxi; gðW0 � hi þ cÞÞ

¼ minimize
H

1
M

XM
i¼1

Lðxi; gðWT � f ðW � xi þ bÞ þ cÞÞ ðA:3Þ

where H ¼ ðW;b; cÞ, and the loss function of Lðxi; x̂iÞ can be calcu-
lated as,

Lðxi; x̂iÞ ¼jj xi � x̂i jj ðA:4Þ
For industry examples, to adapt the complexnoisy circumstances

and enforce algorithm robustness, denoising autoencoder model
(DAE) [49] is developed. The key task of the DAE model is to trans-
form the original data xi to a corrupted data ~xi. For each ~xi, some val-
ues of xi are set to be 0 and others remain unchanged [49].
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