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This paper introduces an upgraded synchroextracting transform (SET), namely ameliorated synchroex-
tracting transform (ASET), to deal with fast time-varying and strong frequency modulated signals for time
and frequency analysis (TFA). SET is a recently developed time-frequency representation (TFR) method
with an exceptional capability to enhance the readability of TFR, yet the kernel of SET is based upon
the assumption of purely harmonic signal, therefore, it is more applicable to slow time-varying and
weekly frequency modulated signals. However, for rotating machines in real practice, fluctuation loads
and varying rotational speeds are always inevitable, the resultant vibrations will exhibit non-
stationary frequency-modulated nature. To tackle this problem, in this paper, the synchroextracted oper-
ator in SET is upgraded in terms of second-order Taylor expansion to estimate the fast and strong fre-
quency modulated signals so that a better TFR can be achieved. The advantages of ASET is
demonstrated with simulated and experimental studies by comparing the existing time and frequency
analysis methods. The sharpness of TFR, the ability of signal reconstruction and the robustness to noise

pollution are also demonstrated.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Time-frequency analysis (TFA) has been widely used in a wide
variety of fields such as speech, mechanical vibration, electromag-
netic equipment and radar signals [1-4]. The classical TFA meth-
ods, such as short-time Fourier transform (STFT) [5], Wigner-Ville
distribution (WVD) [6] and continuous wavelet transform (CWT)
| 7], all have their inherent drawbacks. For STFT, due to the invari-
able width of each analyzed window, it suffers from poor time-
frequency (TF) resolution which limits the ability of the method
to represent features of non-stationary signals. Restricted by the
cross-terms when analyzing multicomponent signals, WVD may
result in illusive components [8]. In detecting the ridges, or in other
words, tracking the instantaneous frequencies from CWT result [9],
for non-stationary signal, the blurred TFR may also occur and the
readability of the TF spectrum is therefore not satisfactory for ridge
detection.

Time-frequency analysis is heavily dependent on clear TFR
results, i.e., energy concentrated or sharpened representation and
no misleading interference terms in TF plane. TFR, especially the
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high-quality TF readability, is beneficial for visual interpretation
of TFA results as well as better discrimination between known pat-
terns for non-stationary signal classification.

However, as have been mentioned above, it should notice that
the traditional TFA methods all have limitations on their TF read-
ability. Therefore, in order to obtain a high-resolution of TF read-
ability, some post-processing TF technique is developed.
Recently, advanced TFA approaches such as reassignment method
(RM) [10], synchrosqueezing transform (SST) [11,12] and syn-
chroextracting transform (SET) [13], have been proposed. Among
them, RM reassigns the time-frequency spectrogram into the
instantaneous frequency (IF) trajectory along with the two-
dimensional TF directions, an improved energy concentration of
TFR, therefore, can be provided. However, it loses its ability to
reconstruct the components from the original signal [14]. In order
to solve the signal reconstruction problem, the method of SST is
proposed. SST squeezes the TF coefficients into the IF trajectory
only in the frequency direction, as a result, it can not only exhibit
a TF spectrum with better readability, but also can provide the
reconstruction ability to extract a specific component from the
original signal. By comparing STFT, CWT and the recently intro-
duced SST, latsenko D et al. [15,16] found that SST also has its
drawbacks in low TF resolution of separating and reconstructing
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the interesting components from the raw signal and is highly sen-
sitive to noise. For solving the above shortcomings and providing a
high-resolution TFR, SET is proposed by Yu et al. [13]. The strategy
of SET is to retain the closest information related to time-varying
features of the original signal and reduce the blurred TF energy
in TFR. As a result, it can provide a high-resolution TFR with signal
reconstruction ability and simultaneously it features red an
improved robust to noise pollution. Though the SET features sev-
eral advantages, it also has limitations on representing signals with
nonlinear and non-stationary nature. The main reason for that is
the standard SET based upon the assumption that the analyzed sig-
nal is purely harmonic [17,18]. As a result, it is more applicable to
deal with signals with “small” amplitude and frequency modula-
tions, whereas, signals with “strong” nonlinear and non-
stationary nature are of not suitable for the current SET method.
In other words, SET is incapable to deal with strong nonlinear
and non-stationary signal properly. In fact, most signals, may fea-
ture nonlinear and non-stationary nature, such as, chirps involved
in radar [19], voice signal [20], oscillatory waves [21], and vibration
signal of rotating machinery [22-24]. To overcome this problem,
various technical approaches have been addressed on how to deal
with fast and strong frequency modulated signal. For instance, in
[25], a generalized synchrosqueezing algorithm is introduced,
and it is composed of two distinct steps: first of which is computes
SST, estimates the instantaneous frequency modulation, and the
second part can be described in terms of recomputes SST on the
demodulated signal. Similarly, an iterative procedure algorithm is
developed in [26,27], where at each iteration, SST is computed with
a better time-frequency resolution. In our preliminary work [28], a
generalized synchroextracting transform (GSET) designed of the
hybrid a synchroextracting operator and a generalized Fourier
transform, and it has been successfully applied to enhance the
time-frequency representation for a similar type of signal analysis.
For GSET, it is sensitive to noise, as a result, it is not suitable to deal
with a noise-contaminated signal in real practice. And, for GSET,
the procedure of generalized Fourier transform (GFT) is always
needed. Multiple iterations procedures in GFT are essential to
obtain an instantaneous phase function which is used to decom-
pose the original signal. However, a best-matched instantaneous
phase function, especially for the fast and strong modulated signal,
is not easy to be obtained by these multiple iteration procedures.

In contrast with all the above mentioned attempts [25-28], in
this paper, a one-step ameliorated synchroextracting transform
(ASET) is proposed. It consists of an improved version of the local
instantaneous frequency estimation (LIFE) for SET and then the
synchroextracting operator is applied to rearrange the coefficients
of the STFT. Compared with reported SET methods using the syn-
chroextracting operator, ASET utilizes a second-order approxima-
tion strategy to upgrade SET to deal with the noted fast and
strong modulation signal. In principle, these methods can be
divided into two categories. The first type is multiple iterations
(multiple steps) algorithm which is mentioned in [25-28]. And
the second type is a one-step algorithm such as [10,11,13]. The
synchrosqueezing operator in first type methods is based upon
the assumption of a purely harmonic signal. However, the pro-
posed ASET method as a one-step algorithm is based on the
improved version of a kernel of LIFE to deal with the fast and
strong modulated signal. For fair comparison’s sake, ASET will be
compared with traditional TFA methods such as STFT, RM and
recently proposed the one-step algorithm SST and SET. In the
end, ASET is validated by synthetic and experimental rotating
machine vibration signal.

The remainder of this paper is structured as follows: firstly, in
Section 2, we will revisit the basic theory of SET and then the lim-
itations of the standard SET will be illustrated in Section 3. In Sec-
tion 4, the numerical experiments and performance exploration

will be delivered. Besides, two numerical signals are applied to
illustrate the quantified analysis of the TF representation by differ-
ent TFAs. The applications of mechanical vibration signal analysis
could be found in Section 5. Finally, the conclusion could be drawn
in Section 6.

2. Revisiting the synchroextracting transform for TFR

Using STFT to analyze multi-component signals, when it comes
to a distance between two ridges in TFR is not larger than the
width of the frequency support of window g and then each of the
components is occupied overlapping regions in the TF plane
[11,29]. As a result, the readability of the time-frequency spectrum
is dropped tremendously and it means that the corresponding TFR
energy is smeared and may mislead to the misleading signal anal-
ysis result. To alleviate the TFR blurring effect from the result of
STFT, Ingrid Daubechies et al. [11] introduced the algorithm of syn-
chrosqueezing. Furthermore, to obtain a more ideal and energy
concentrated TFR, Yu et al. [13] proposed a synchroextracting
transform. In this method, it used a post-processing operator,
namely synchroextracting operator, to obtain the IF information
most related to time-varying features of the original signal and,
to a large extent, remove smeared TF energy, thus the energy con-
centration of TFR can be enhanced. In the following, the mathemat-
ical theory of SET will be briefly reviewed.

Suppose that the signal is a purely harmonic signal [13]
x(t) = A(t)e?™® je, a constant frequency ¢'(t)=f, and with
invariant amplitude A(t) = Ao,

X(t) = Age”™o (1)

The Fourier transform (FT) of x(t) can be obtained as,
X(f) =Ao-(f — fo) (2)
The following four steps are necessary.

Step 1: To obtain the result of STFT. S§(t,f) denotes STFT of the

original signal x(t) using the analyzed window g, and it can be cal-
culated as,

+o00
Si(t.f) = /0 X(u)g(u — t)e 2T E0dy = ME(t,f) - 2D

=Ao-8(f —fo) - 2ot =x(t) - &(f — fo) 3)

Remark: The usual definition of STFT differs from Eq. (3) by a
factor e?™, Also, as we assume the analyzed window function g
to be real-valued. Where g is the FT of g. M(t,f) is instantaneous
amplitude of STFT result with x(t) and the instantaneous frequency

0

fo of STFT with x(t) holds f, = 24)),

Step 2: To obtain the estimation of instantaneous frequency, it
is based on the result of step 1 and calculate the derivative of
SE(t, ) with respect to time as,

1S

- 2im SY(t.f)
(4)

Ous(t.) = #'0) = D) = 5 darctansi(c.f)

where wi(t,f) is the estimation of IF for x(t).

Step 3: To reassign the complex coefficients on STFT result.
Reassignment details of mapping (t,f) — (t, wins(t,f)) reader may
refer to [13],

Tg(tmf) :S;z((tvf) 5(('0_ wms(tvf)) (5)

where T;(t,f) denotes SET of x(t).
Step 4: To reconstruct the original signal x(t). Substituting
Eq. (3) into Eq. (5), as such x(t) can be obtained by,
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1
X(t) *g(w (DO) 5((() wms tf)) ‘(u o, O=Wjns(tf)

/ T"tfdf— / T (t.f)df (6)

To illustrate the TF representation and reconstruction results of dif-
ferent TFA methods, a numerical synthetic signal x(t) is used for
demonstration. This signal consists of four components, that is a
pure harmonic x; (t), a linear chirp signal x(t), a small variation fre-
quency modulated signal x3(t) and a strongly nonlinear sinusoidal
frequency modulated signal x4(t). The waveform of x(t) and its
Fourier spectrum are presented in Fig. 1(a) and (b), respectively.
The ideal TF trajectories are displayed in Fig. 1(c). Using STFT, SST,
SET and RM to analyze signal of x;(t),x»(t) and x5(t), the corre-
sponding TFRs are plotted in Fig. 2(a), (b), (¢) and (d). It is clearly
shown that the results of STFT and SST generates smeared TFR,
but x;(t) can precisely exhibit by SST (see in Fig. 2(b)). Comparing
the TFRs from SET and RM, it can be found that the first three
modes are perfectly represented in a sharpened TF trajectories
(see in Fig. 2(c) and (d)). Owing to the mode x4(t) consisting
strongly non-stationary frequency modulation, it leads to substan-
tially distorted IF trajectories (see in Fig. 2(a), (b), (¢) and (d)) as
compared to the ideal IF trajectories shown in Fig. 1(c). The above
discussions can be briefly illustrated by Table 1.

The above observations motivate us to tackle the strongly
frequency-modulated mode in signal analysis. To obtain a clear
TFR or precisely represent strong time-varying frequency modula-
tion features of signals, an ameliorated synchroextracting trans-
form (ASET) approach is then introduced to cope with this
problem.

3. Ameliorated synchroextracting transform (ASET)

In Section 2, it is known that SET is based on an assumption of
pure harmonic signal, i.e., containing “small” frequency modula-
tions. It can be described as, for all t and Ve > 0,|A’(t)| < &€ and
|¢"(t)| < e. To accommodate strong frequency modulation, an

Amplitude

upgraded local instantaneous frequency approximation is used to
modify the approach of ASET, and the mathematical theory of ASET
will be given in this Section.

Let wus consider a signal h(t) = B(t)e?™®, where
$(t) = a+ bt +1ct? is a polynomial of degree 2 and B(t) > 0. It is
also possible to choose other higher degree. Yet, they all have sim-
ilar analysis. Thus, in this paper we use second-order degree as an
example. To apply SET to a signal h(t), step 1, the STFT result of
S5 (t,f) should be calculated first. For this signal, ¢'(t) is not a con-
stant anymore, thus a second-order Taylor expansion is used to
approximate the phase function ¢(t) at ¢,

h(u) =

U) e2imd(u B(t)ezin(a+bt+%ct2) |u:r

B(
B(t)ezm[qs(t +(0) (u—)+3¢" () (u—1)? ]
= B( el (0)(u-

the e2imo(t) t)? p2im' (H)(u-1)

h( ) emcu t)? Zinqﬁ’(t)(u—t) (7)

Step 1: Note that ¢"(t) =c and substitute Eq. (7) to (3) with
u —t = 1, then the STFT of signal h(t) can be calculated as,

+o0
Sp(t.f) = /0 h(u)g(u — t)e 2704y
_ /ﬁc h(t) - einc(uft)Zezimﬁ'(t)(uft)g(u _ t)e—ian(uft)du
0
+00
B h(t)/ g(r)e™ e U O dr — ME(L,f) - €4 (8)
0

where M§(t,f) and ¢7(t.f) are instantaneous amplitude and instan-
taneous phase of STFT result with h(t), respectively.

In [30], it was shown that the local time delay &;,(t,f) can be
used to calculate the instantaneous frequency and it was also
defined in [31]. As such, in the case of signal h(t), the t;;s(t,f) can
be written as,

1 99(t.f)

bt =t 52 L - oy arg Sy f) )

= 10%

N W b OO

it

Amplitude

0 50 100 150
Time (s)
(b)

Fig. 1. (a) Waveform of simulated
X3(t) = sin(2m - (65t + 2.3 - cos(2m - 0.5t))); Xa

signal (b)
(t) =sin(27 - (100t + 2.1 - cos(27 - 1.4t))).

Fourier spectrum of simulated

Time (s)

(c)

signal (c) Ideal IF, x;(t)=sin(2m-10t); xa(t) =sin(27- (18t +3.2%));
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Fig. 2. (a) Time-frequency spectrum: STFT result, (b) SST result, (c) SET result, (d) RM result.

Table 1
Performance of different methods for TFA.

TFA methods TFR* for x;(t) i=1~4) Reconstruction®

x1(t) X (t) x3(t) X4(t)
STFT B B B B R
SST C B B B R
SET C C C B R
RM C C C B Non-r

¢ B means that the TFR is blurred, C denotes that the TFR is clear.
> R (or Non-r) means that this method have (or do not have) the ability to
reconstruct interested signal.

where ¢7(t.f) is the phase function of signal h(t). Substituting Eq.
(8) into Eq. (9), tins(t,f) can be obtained as,

+0oo . ,
tins(L.f) =t — zlnaf arg {h(f)/ g(t)eme e 2n(f0 (“)fdv:]
0

+oo . ,
=t- Zl—n@f {2ﬂ¢(t) +arg / g(1)el™ 0T . g 2in(f-o “))’df}
0

_ 1 o ing" ()12 o=2in(f-¢'(0)7
—tfﬁaf arg/O g(7)e -e dt (10)
Assuming the function of u was defined as,
d +oo PPN
u(e) = gzarg {/ g(x)em" O e*z’“*”‘dx} (11)
C 0

Then &;,5(t,f) can be given in a simplified form as,

bus(t.1) = £ — 5 u(f — §(0) (12

The estimation of the instantaneous frequency ¢’ is given by [31],
d)irIS(t’f) = d’,(fim(tvf)) (13)
Recalling that ¢'(t) = b + ct , then @y(t,f) can be obtained by
. N c ,
wins(tvf) =b+c- tins(tvf) =b+ct- ﬁu(f —¢ (t))
, c /
= ¢(0) —5-u(f — ¢'(1))

Eq. (14) clearly shows that,

Case 1: if ¢ = ¢”(t) = 0, it mean that &;,s(t,f) is identical with Eq.
(4), therefore SET is valid.

Case 2: if c = ¢"(t) # 0, SET is not valid, yet Eq. (14) cannot hold
this condition. Hence, we introduce second-order Taylor expansion
and the instantaneous frequency can be approximated as,

¢'(6) = ¢' (tins(£,6)) + ¢ (Eins (£,6)) (£ — Lins(£.))

(14)

= Wins () + Gn(E.) (£~ Tins(L.S)) (15)
Letting ¢" (£ins(t.f)) = q,(t.f), and it was defined as followings,
aS ()
. O ( Sﬁ?m >
qn(t.f) =Re (16)

2 — 9, (afsﬁ(tf))

Seh

Step 2: In [30,32] the local operator g, (t,f) has been given. There-
fore, the upgraded estimation of the local instantaneous frequency
can be written as follows,
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(bim(t’f) = winS(tvf) + f]h(tvf) (t - firlS(t’f))

Step 3: Ameliorated synchroextracting transform (ASET) is then
determined by replacing wi(t,f) in Eq. (5) with wus(t,f), and
defines as,

(17)

Te(t, ) = S{(E.f) - (2 — Dins(£.f) (18)
where w = 27if and T/ (t, w) denotes ASET of h(t).
Step 4: Meanwhile, the component of h(t) can also be recon-

structed by replacing T;(t, w) with ﬂ'(t,w) in (6) as following,

X(t) :ﬁ'zln/o C T w)de

Thus, Eq. (8) of step 1, Eq. (17) of upgraded step 2, Eq. (18) and Eq.
(19) of step 3 and 4, makes up the ameliorated synchroextracting
transform.

From the SET method demonstrated in Section 2 and the pro-
posed ASET derived in Section 3, it can be concluded that SET is
based on the pure harmonic signal, i.e., containing “small” fre-
quency modulation, so the instantaneous frequency can be esti-
mated by the Eq. (4) and the TFA results of x;(t),x,(t) and x5(t)
are well represented by SET as it shown in Fig. 2(c). However, for
the strong frequency modulated signal x4(t) in Fig. 2(c), it can be
noted that the smeared time-frequency energy is not converged
into TF trajectory so it causes an ambiguous TFA result. And the
TF information cannot be precisely extracted from this result as
well. Therefore, the standard SET is not suitable for analyzing this
type of strong frequency modulated signal. To accommodate the
strong frequency modulated signal, the current instantaneous fre-
quency approximation in Eq. (4) need to be upgraded, so the new
instantaneous frequency estimation theory is provided in Eq.
(17). From Eq. (15), the new instantaneous frequency estimation
can not only adapt to the “small” frequency modulation, i.e., the
case of ¢ = ¢"(t) = 0, but also accommodate to strong frequency

(19)

modulation, i.e.,, the case of c= ¢"(t) # 0. In short, ASET as an
improved version of SET, it not only can deal with a signal with
“small” frequency modulation but also can accommodate to the
strong frequency modulation signal. Moreover, a high order ver-
sion of synchroextracting transform is also possible for ASET, while
their analysis is similar. Simulated experimental studies and rotat-
ing machine vibration signal would be applied to validate the
effectiveness of ASET in Section 4 and Section 5.

4. Numerical experiments and performance exploration

To investigate the performance of the proposed ASET approach,
a simulation study is used to demonstrate its effectiveness,
embracing Rényi entropy to measure the sharpness of TFR, the
ability of signal reconstruction and robustness to noise pollution.
The comparison is made between several traditional and recently
introduced TFA methods, i.e., the STFT, SST, RM, and SET. Noted
in this simulation, it is necessary to choose the suitable window
function to calculate the result of STFT. Meanwhile, considering
the Gaussian window function has the minimal area of the Heisen-
berg box [13], so the Gaussian window is used as,

1

g(t)=e "o (20)

4.1. Mono-component signal

To achieve a quantitative analysis between the various meth-
ods, a mono-component signal is used for comparison first. The
signal is modeled as

X(t) = e=05" .sin(27 - (50t + 2.0 - sin(271.3 - t))) (21)

The mono-component signal x(t) is an amplitude modulation (AM)
and frequency modulation (FM) signal, with varying amplitude and
strong nonlinear sinusoidal frequency modulations. It is sampled

80 610
§ 60 g 4
g g
40 <2
20 0
0 2 4 6 0 2 4 6
Time (s) Time (s)
(a) “ (b)
o]
4
§ 2
E. 0
2
-4
-0
0 1 2 3 4 5 6
Time (s)
(c)

Fig. 3. Mono-component signal x(t), (a) IF trajectory, (b) IA trajectory, (c) Waveform of x(t).
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with 1024 Hz. For the signal model defined in Eq. (21), its IF trajec-
tories are plotted in Fig. 3(a). The corresponding instantaneous
amplitude (IA) trajectory and waveform are generated in Fig. 3(b)
and Fig. 3(c).

(a) Qualitative evaluation the sharpness of TFR

To explore the performance to noise influence of different TFAs,
white Gaussian noise is added into the simulated signal (signal-to-
noise ratio (SNR) is 5 dB). The noise-free and noise-contaminated
signal is analyzed by ASET and other TFA methods, namely STFT,
SST, SET and RM.

In Figs. 4 and 5, the TFRs for both noise free and noise contam-
inated signal are depicted. In the noise free case, it can be observed

that the TFRs obtained by STFT, SST and SET (shown in Fig. 4(A)-
(C)) have a low energy concentration representation. Furthermore,
it is more clear in the specific region ([1.10,1.35]s x [35]|Hz shown
in Fig. 4(a)-(c)), i.e., the zoomed rectangular region of correspond-
ing Fig. 4(A)-(C). It means that these methods fail to represent the
TF content of the simulated signal x(t) properly. Similarly, in the
noise contaminated case, for SST result (in Fig. 5(B) and zoomed
version (b)), it is smeared, since the SST squeezes the TF coeffi-
cients only in the frequency direction. Due to RM is a reassigned
but irreversible TFA method, it reassigns the TF spectrogram in
the two-dimensional TF directions. Thus, it has a slight enhance-
ment for the sharpness of the spectrogram (shown in Fig. 4, 5(D)

Fig. 4. TFRs of free noisy signal x(t) obtained by (A) STFT, (a) zoomed version of STFT, (B) SST, (b) zoomed version of SST, (C) SET, (c) zoomed version of SET, (D) RM, (d)
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zoomed version of RM, (E) ASET, (e) zoomed version of ASET.

Fig. 5. TFRs of noisy signal x(t) with SNR = 5 dB obtained by (A) STFT, (a) zoomed version of STFT, (B) SST, (b) zoomed version of SST, (C) SET, (c) zoomed version of SET, (D)

RM, (d) zoomed version of RM, (E) ASET, (e) zoomed version of ASET.
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and (d)). Clearly, the results of ASET (in Fig. 4, 5(E) and (e)) are bet-
ter than the other methods.

(b) Quantitative comparison the sharpness of TFR

To quantitatively evaluate the energy concentration perfor-
mance of different methods, the Rényi entropy [33,34] is employed
to evaluate the performance of difference TFA methods in this
paper. The Rényi entropy of order o for a continuous-valued bivari-
ate density P(x,y) can be measured as follows,

1 o JP*(x,y)dxdy
5 08 [ P(x,y)dxdy

For a signal whose TFR is P(t, @), and the Rényi entropy is defined as
a prenormalized version equivalent to normalizing the signal
energy before raising the TFR to the oo power

Ry :llfotlog2 // (%) C4dtda)

From [34], it proved that a lower Rényi entropy value denotes a
more energy concentrated TFR. And the third-order Rényi entropy
is used to quantitatively evaluate the TF energy concentration since
it has been proved that oo = 3 is the smallest integer value to yield a
well-defined useful information evaluation for a large class of sig-
nals [34]. The corresponding Rényi entropies are listed in Table 2.
From Table 2, it can be observed that ASET has the lowest Rényi
entropy, which means that it can generate the more energy concen-
trated TFR among five methods, see Fig. 4(E) and (e). In this case, it
can be found that the TF energy concentration is greatly improved
by ASET which measured the lowest Rényi entropy, see Fig. 6(a).
Compared with other methods, ASET result can almost perfectly
characterize the fast time varying feature, the result is almost iden-
tical to the ideal TF spectrogram in Fig. 3(a). It may conclude that
the proposed ASET can effectively improve TF energy concentration
through the comparison among above five TFA methods.

(c¢) Evaluation the robustness to noise interference

In order further to visualize the influence of noise, different
level noises (SNR from 0 to 30 dB) are added into the original x(t)
signal. A comparison of Rényi entropy value under different noise
levels are made in Fig. 6(a). It indicates that with the increase of
noise, the value of Rényi entropy increases. It means that the
energy concentration of TFR degrades. While, ASET exhibit the best

R: (22)

1-—

(23)

ability of energy concentration with the minimal Rényi entropy,
and its result can be seen in Fig. 6(a). Thus, based on the above dis-
cussion, it may conclude that for the mono-component signal with
fast and strong frequency modulation, the ASET not only can
enhance the TF energy concentration but also can improve the
robustness to noise influence.

4.2. Multicomponent signal

In this section, we consider a multicomponent signal consisting
of three different frequency modulated components. In this case,
the simulated multicomponent signal is used to explore the perfor-
mance of the proposed method ASET comparing with five tradi-
tional TFA methods. The signal y(t) are written as,

y1(t) =sin(2m - (10t + 2.0 - cos(2m - 0.3t)))
y(t) =< y,(t) =sin(2m - (30t + 1.5 - cos(27 - 0.8¢))) (24)
Y3(t) = sin(2m - (60t +4.0 - cos(2m - 0.8t)))

Eq. (24) tells that signal y(t) =y, (t) + y,(t) + y5(t) in which three
types of nonlinear sinusoidal frequency modulations are included.
The first component has a very slow varying sinusoidal frequency
modulation. And the fast and strongly sinusoidal frequency modu-
lation is contained in the other two components. The simulated sig-
nal is sampled with 1024 Hz. The ideal IF trajectory and waveform
can correspondingly be drawn in Fig. 7(a) and (b). Furthermore, it
can be observed that the components of y, (t) and y;(t) have a trend
of distinct fast-varying frequency modulation.

Similarly, as analyzing of the mono-component signal x(t), in
this section, the multicomponent signal y(t) is used to explore
the performance of TFR, the ability of reconstructed signal, the
robustness to noise pollution, the performance of extracted TF
ridges and comparisons of computational time.

(a) Qualitative evaluation the TF energy concentration

Fig. 8 and 9 present the TFRs including noise free and noise con-
taminated (SNR = 5 dB) cases. In the noise free case, the component
¥, (t) (see in Fig. 7(a)) consists of the very slow frequency modula-
tion, thus SET and RM can characterize this slow time-varying fea-
ture properly, see in Fig. 8(c) and (d). However, owing to the
component of y,(t) including a fast and strong time-varying fre-
quency modulation, apart from RM has a slight improvement for

Table 2
Rényi entropy of different TFA methods for x(t) (with SNR = 5 dB)
TFA methods STFT SST SET RM ASET
Rényi entropy 18.52 16.98 15.20 14.90 13.19
20 T T T T T
25 T T 1
8 2;? l —=— SST ds=5
m 20f |[—® " SSTds=10 >
S e T SET ° —>—SST ds=15 ) q
£ 16 RM X 5/ |—e—sET : 4
@ ASET & ASET &
2 1 g0 .
o 3 e
12 5| ¥
0 ‘ ‘ ‘ ‘
10 L L L L L 0 5 10 15 20 25 30
0 5 10 15 20 25 30 Input-SNR (dB)
Input-SNR (dB) (b)
(a)

Fig. 6. (a) Rényi entropies of the different TFRs for signal x(t) with different noise levels from 0 to 30 dB. (b) The SNR of reconstructed results by different TFA methods with

different noise levels from 0 to 30 dB.
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Fig. 9. TFRs of noisy signal y(t) with SNR =5 dB obtained by (a) STFT, (b) SST, (c) SET, (d) RM, (e) ASET.
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TFR (shown in Fig. 8(d)), STFT, SST and SET cannot appropriately
describe the TF feature, see in Fig. 8(a)-(c). Similarly, in the noise
contaminated case, STFT and SST also have a smeared TFR (see in
Fig. 9(a) and (b)). Fortunately, ASET can appropriately describe TF
content of signal y(t) under both noise free and noise contaminated
conditions, see in Fig. 8, 9(e).

(b) Quantitative analysis the TF energy concentration

To quantitative analysis the TF energy concentration, the Rényi
entropy is again used to measure the performance among these
five methods. The corresponding Rényi entropies are listed in
Table 3. In Table 3, it can be seen that ASET also has the lowest
Rényi entropy, and it means that it has a better ability for TFR
among the five methods. In this case, it also can be found that
the sharpness of the TF spectrum is substantially enhanced by
ASET, see in Fig. 8, 9(e). Compared with other methods, ASET fea-
tures prominent advantages in TFR, the result (see in Fig. 8, 9(e))
is almost identical to the ideal TF spectrogram in Fig. 7(a).

(c) Evaluation of interested signal reconstruction performance

Regarding evaluate the signal reconstruction performance, as it
noted that in [11,13], SST and SET have main advantage over RM is
its ability to reconstruct signal. Therefore, reconstruction inter-
ested signal performance of ASET is compared with SST and SET.
The simulated signal in Eq. (21) and Eq. (24) are also added noises
(noise levels from 0 to 30 dB). From the signal reconstruction for-
mula in Eq. (6) and Eq. (19), it tells that SET and ASET, to recon-
struct a signal, all need one parameter wi;(t,f), i.e., the IF
trajectory corresponding to each component.

For the mono-component signal, the IF trajectory can be esti-
mated by the maximum value detection method directly, i.e.,
Wins(t,f) = arg max,|TFR(t,f)|, where TFR(t,f) denotes the TFA to
be analyzed. But for SST, apart from the parameter of w,(t,f), it
also needs to know the integration parameter ds which is utilized
to measure the integration region [13]. So, three different integra-
tion parameters, ds =5,10,15 are used to reconstruct the compo-
nent of original signal.

However, for the multicomponent signal, the first step is to
decompose each mono-component in a multicomponent signal
and then is to estimate each corresponding IF trajectories. Fortu-
nately, a new algorithm has been introduced in [35], which is used
to detect all IF trajectories at the same time. Hence, if the number
of K is known, this algorithm can be used to calculate the local min-
imum value of the function

r+00

K +o0
E) =Y~ [ IERE Pl [ (207 + Bl
k=1 oo

(25)

o0

where fo:] (t, ¢ (t)) denotes the detection of the IF trajectories, 4,
are two parameters to adjust the level of regularization. For the
multicomponent signal y(t) in Eq. (24), the parameter of K can be
set as 3.

So, the results of mono-component signal x(t) and multicompo-
nent signal y(t) are displayed in Figs. 6(b) and 10(b). For the recon-
struction of signal x(t), it can be seen that, for SST method, more TF
coefficients such as ds =15 yield better robustness to noise. For
SNR from 1 dB to 18 dB, apart from STFT, all these TFAs have a sim-
ilar performance. For ASET, owing to the introduction of second-
order approximation, it has an excellent performance of signal
reconstruction as it is shown in Fig. 6(b). Moreover, for multicom-
ponent signal y(t) it also indicates that ASET provides competitive
advantage than other TFAs (see in Fig. 10(b)). And looking at results
(shown in Figs. 11 and 12) for each mono-component, one
observes that for y,(t) component since it is a slight modulated,
the corresponding TF ridges can be precisely detected among the
three methods SST, AET and ASET in low (SNR=5dB) or high
(SNR =20dB) SNR conditions. However, owning the component
y5(t) which contains strong nonlinear frequency modulations, both
SST and SET (see in Figs. 11(a), (b) and 12(a), (b)) fail to represent
the components as the ideal energy concentrated TF trajectories,
some important TF information being spread out around the trajec-
tories. Fortunately, when the second -order local instantaneous
frequency approximation terms was considered in the definition
of ASET, it not only can enhance the quality of interested signal
component reconstruction but also the trajectories detection. To
further evaluate the extracted time-frequency trajectory, an error
between ideal trajectory and estimated trajectory can be measured
by an indicator such as mean absolute error (MAE), which is calcu-
lated as

(26)

1 & JIF. (k) — IF;(k)
MAE _R; IF;(k) ’

where IF.(k) is the extracted time-frequency trajectory by

time-frequency representation methods and IF;(k) is ideal
Table 3
Rényi entropy of different TFA methods for y(t) (with SNR =5 dB)
TFA methods STFT SST SET RM ASET
Rényi entropy 18.4 16.38 14.74 14.81 13.55
19 7 ‘
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Fig. 10. (a) Rényi entropies of the different TFRs for signal y(t) with different noise levels from 0 to 30 dB. (b) The SNR of reconstructed results by different TFA methods with

different noise levels from 0 to 30 dB.
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Fig. 12. SNR added to the signal is 5 dB, and Ridges estimated by (a) SST, (b) SET, (c) ASET.

time-frequency trajectory. For the extracted time-frequency trajec-
tory shown in Figs. 11 and 12, and the values of MAE are calculated
as 0.683, 0.362, 0.002 and 0.894, 0.435, 0.034 respectively.

(d) Evaluation the robustness to noise pollution

Similarly to the mono-component signal x(t) analysis, different
level noises (SNR from O to 30 dB) are also added into the original
y(t) signal. Another comparison of Rényi entropy value under dif-
ferent noise levels are made in Fig. 10(a). It also shows that ASET

exhibit the best ability of energy concentration among the other
five methods. Thus, for the multicomponent signal, ASET again fea-
tures advantages in improving the sharpness of the TF spectrum
and can enhance the robustness to noise pollution.

(e) Evaluation of extracting TF ridges

To investigate the ability of detection of TF ridges for multicom-
ponent signal under different levels of noise pollution. Figs. 11 and
12 (SNR of signal are 20 dB and 5 dB, receptively) illustrate the
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corresponding plots of estimated ridges. The time-varying feature
components of y,(t) and y,(t) in the SST results (see in Figs. 11
(a) and 12(a)) are heavily affected by noise. Owning to component
of y;(t) including the fast and strong frequency modulation, the
analysis results of SST and SET (see in Figs. 11, 12(a) and (b)) fail
to describe this TF content under different noisy levels. However,
for the above different noise levels, ASET (see in Figs. 11(c) and
12(c)) can always estimate the TF ridges which is almost identical
to the ideal TF. Thus, it indicated that ASET is a better choice for TF
ridge detection.

(f) Comparisons of computational time

The computational efficiency of time-frequency analysis (TFA)
methods is vital for practice implementation. In this case, software
for implementing the above methods is MATLAB (version 2018a).

Table 4
Required computation time
TFA methods STFT SST SET RM ASET
Time(s) 0.020 0.060 0.049 0.052 0.042
10
12 3 4 5 6 7

Fig. 13. Experimental set-up of case A: 1-motor controller, 2-drive motor, 3-
tachometer,4,8-bearing pedestals 5-rotor 6-disk, 7-mating flanges 9-gearbox 10-
zoomed proximity probes.
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These methods are run on a machine utilizing a 12-core CPU (Intel
i7 8700 K) with 32G of DDR4 memory, and the required computa-
tional time for the aforementioned five kinds of TFA methods are
listed in Table 4.

5. Application in rotating machine vibration signal analysis
5.1. Case A

So far, all the examples have focused on the simulated signal. In
this section, the experimental signal measured from a real test rig
is utilized to validate the capability of ASET. A machinery fault
simulator-magnum (MFS-MG) at University of Electronic Science
and Technology of China (UESTC), Engineering Reliability and Prog-
nostic and Health Management Laboratory (ERPHM) is used for the
study. The experimental set-up consists of a drive motor which is a
2.24 kW three-phase electrical motor controlled by a motor speed
controller. An accelerometer (with a sensitivity of 100 mV/g and
frequency range 0-10 kHz, see in Fig. 13, and a shaft tachometer
(produced by Encoder Products Co. with 1 pulse/revolution) are
used for capturing vibration and Tacho signals simultaneously.
During the experiments, the data are captured by accelerometers
mounted to bearing pedestals (see in Fig. 13 (4, 8)) under fluctuat-
ing speed from 10 Hz to 40 Hz within 20 s and 12 s data is used for
the following analysis. The sampling frequency is set to be
10,240 Hz. The whole set-up arrangement is shown in Fig. 13.
Meanwhile, the instantaneous speed of the motor is recorded by
a tachometer and the collect the tacho signal is plotted in
Fig. 14(c), with which IF can be calculated for comparison.

To investigate the performance of ASET applied in rotating
machine vibration signal, the measured signal by an accelerometer
mounted on bearing pedestals (see in Fig. 13-4) is used for analyz-
ing. The waveform of the raw vibration signal and its frequency
spectrum is displayed in Fig. 14(a) and (b), respectively. According
to the measured tacho signal shown in Fig. 14(c), the instantaneous
rotating frequency of the rotor shaft can be estimated in Fig. 14(d).
Fig. 15 shows the corresponding time-frequency representations
(TFRs) associated with the five different methods, as well as
zoomed-in the region at ([1.50,3.50]s x [10]) Hz shown in Fig. 15
(a-e), i.e., the zoomed-in rectangular region in Fig. 15(A-E). From
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Fig. 14. (a) Waveform of vibration signal (b) spectrum of vibration signal (c) tacho signal (d) rotating frequency measured by tachometer.
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the result of ASET shown in Fig. 15(E) and (e), the energy of TFR is
concentrated along the ridge, whereas in the case of STFT, SST and
SET (see in Fig. 15(A, a), (B, b) and (C, ¢)) they fail to provide accu-
racy time-frequency representations. According to the results of
Fig. 15(E) and (e), ASET clearly features advantages for TFR under
fluctuated rotational speed condition. Apart from ASET, all the
other methods cannot give a satisfied result for characterizing of
signals under fluctuated rotational speed condition.

Utilizing the IF trajectory estimated by ASET, the extracted IF
ridge is depicted in Fig. 16(a). From Fig. 16(b), it can be observed
that instantaneous rotating frequency measured by ASET result
almost perfectly match the estimated result of the tacho signal.
Furthermore, the error between them can be measured by an indi-
cator like MAE, which is defined in Eq. (26). In this real mechanical
vibration signal case, the MAE value is almost 0.0007, and it clearly
interprets that ASET can accurately reflect instantaneous rotating
speed fluctuation of the vibration signal. Therefore, ASET has a
competitive advantage to characterize the features of the fre-
quency modulated signal. In the case of signal reconstruction, the
comparison between the original vibration and reconstructed sig-
nal (the blue solid line is the original vibration signal and the red
dotted line is the reconstructed signal) are shown in Fig. 17(b).
The error between the reconstructed signal and the original signal
can also be measured by an indicator such as root mean square
error (RMSE), and it can be calculated as,

P. Chen et al./ Measurement 148 (2019) 106953

1 kK

RMSE =[5>~ |

(sig, (k) — sig, (k))* (27)

where sig, (k) is the reconstructed signal and sig,(k)is the original
vibration signal. In this experimental vibration signal analysis case,
RMSE value is almost 0.003, which convinced that the proposed
ASET method has excellent reconstruction ability.

5.2. Case B

Compared with case A in Section 5.1, to investigate the perfor-
mance of proposed ASET further studied in terms of the influences
from harmonics, a real experimental study is constructed and
result is discussed in case B. An experimental rotor-bearing system
test rig (see in Fig. 18) is used to measure vibration signal for anal-
ysis. With assembling of an extra disk and a shaft axis adjustment
device shown in Fig. 18, harmonics can be introduced to the mea-
sured signal. In this case, signals are measured by two proximity
probes which are mounted on each bearing housing in the vertical
and horizontal directions under fluctuating operational conditions
with 20 s. For analysis, 8 s data is used. Besides, to reduce the influ-
ence between these two probes, their positions have an offset with
90 degrees as illustrated in Fig. 18 (proximity probes). The time-
domain wave is depicted in Fig. 19.
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Fig. 15. TFRs of vibration signal achieved by (A) STFT, (a) zoomed version of STFT , (B) SST, (b) zoomed version of SST, (C) SET, (c) zoomed version of SET, (D) RM, (d) zoomed

version of RM, (E) ASET, (e) zoomed version of ASET.
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Fig. 16. (a) Extracted TF ridge (b) Instantaneous rotating frequency measured by extracted ridge and tachometer.
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Fig. 19. Waveform of harmonic vibration signal.

The TFRs associated with five different methods, as well as
zoomed-in region at ([4.8, 6.2]sx[18.9, 93.2]Hz) are shown in
Fig. 20(a-e), i.e. the zoomed-in rectangular region in Fig. 20(A-
E). From the result of ASET, it can be seen that the energy of
TFR is concentrated along the ridge (see in Fig. 20(e)). For the
other methods such as STFT, SST, RM and SET (see in Fig. 20(A,
a), (B,b), (C,c) and (D,d)), however they cannot provide a concen-
trated time-frequency representations. Especially for the 2nd
harmonic signal, these methods almost completely fail to obtain
an accurate TFR. It demonstrated that the proposed ASET, indeed,
features advantages in TFR under fluctuating operational condi-
tions. Apart from ASET, the other methods mentioned above fail
to provide a satisfactory result for characterizing of the 1st and
2nd harmonics signal. The estimated IF trajectories are depicted
in Fig. 21, and it can be seen that only ASET can obtain well
concentrated and separated time-frequency representation.

Specifically, SST and SET fail to estimate the ridge of the 2nd har-
monic component and it may attribute the variation of the fre-
quency range of the 2nd harmonic component is wider than the
1st harmonic component. Moreover, together with noise pollution
in a real operational environment (in Fig. 19), it also makes the
extraction of IF trajectories are even more challenging. Finally,
the indicator of MAE is again used to evaluate the signal recon-
struction ability, and the MAE value is calculated to be 0.0006
based on Eq. (26). The comparison between the measured signal
and reconstructed signal (blue solid line is denoted as a signal
with harmonics and the red solid line is the reconstructed signal)
are depicted in Fig. 22. The error between the reconstructed sig-
nal and harmonics signal can also be measured by RMSE (in Eq.
(27)) and its value is 0.025. In short, the proposed ASET exhibits
a competitive advantage to represent the measured signal with
harmonics under fluctuating operational conditions.
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Fig. 20. TFRs of harmonic vibration signal achieved by (A) STFT, (a) zoomed version of STFT , (B) SST, (b) zoomed version of SST, (C) SET, (c) zoomed version of SET, (D) RM, (d)

zoomed version of RM, (E) ASET, (e) zoomed version of ASET.
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Fig. 21. Ridges estimated by (a) SST, (b) SET, (c) ASET.

6. Conclusion

In this paper, ameliorated synchroextracting transform (ASET)
can circumvent the drawbacks of the standard SET and reassigned
transformation. In the ASET, based on the utilizing the second-
order Taylor expansion to estimate signal local IF, the time and fre-
quency variables can be simultaneously considered to overcome
the diffusion limitation of the SET for the signal with fast and
strong time-varying IF and meanwhile remain reconstruction abil-
ity. Indeed, it is emphasized that ASET can be viewed as an
upgraded version of the post-processing TFA method, while it
holds the strategy of synchroextracting manner, allowing for a bet-
ter reconstruction by a direct and convenient step. All the simula-
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Fig. 22. (a) The comparison between the harmonic vibration signal and recon-
structed signal (b) The corresponding residuals after subtracting the harmonic
vibration signal.

tion and real mechanical vibration signal studies suggest that ASET
is a competitive method for the TF representation, signal recon-
struction, and better robustness to noise pollution.
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